Qualitative and Molecular Screening of Potential Ligninolytic Microbes from Termite (Coptotermes curvignathus) Gut

  • CARLINA FREDDIE SIMOL Faculty of Agricultural Sciences and Forestry, Universiti Putra Malaysia Bintulu Sarawak Campus, 97008 Bintulu, Sarawak, Malaysia
  • JOHN KEEN CHUBO Faculty of Agricultural Sciences and Forestry, Universiti Putra Malaysia Bintulu Sarawak Campus, 97008 Bintulu, Sarawak, Malaysia
  • PATRICIA JIE HUNG KING Faculty of Agricultural Sciences and Forestry, Universiti Putra Malaysia Bintulu Sarawak Campus, 97008 Bintulu, Sarawak, Malaysia
  • KIAN HUAT ONG Faculty of Agricultural Sciences and Forestry, Universiti Putra Malaysia Bintulu Sarawak Campus, 97008 Bintulu, Sarawak, Malaysia
  • CINDY CHEW Faculty of Agricultural Sciences and Forestry, Universiti Putra Malaysia Bintulu Sarawak Campus, 97008 Bintulu, Sarawak, Malaysia
  • KHALID NAWI Faculty of Agricultural Sciences and Forestry, Universiti Putra Malaysia Bintulu Sarawak Campus, 97008 Bintulu, Sarawak, Malaysia
Keywords: Ligninolytic enzyme, ligninolytic microbe, termite gut


Ligninolytic microbes have great potential in converting high lignin by-products to more utilisable products by decomposing the lignin-rich agricultural and industrial wastes. Thus, the aim of this study are to screen and identify the potential ligninolytic microbes from the termite (Coptotermes curvignathus) gut. The study was conducted at Universiti Putra Malaysia Bintulu Sarawak Campus, Malaysia. Twenty-seven microbes isolated from termite gut obtained from the Microbiology Laboratory, Faculty of Agricultural Science and Forestry, were used for the ligninolytic activity screening. Media with four different ligninolytic indicator dyes (Azure B, phenol red, methylene blue, and Remazol Brilliant Blue) were streaked with microbial isolates and incubated at 37 °C for 48 h. Out of twenty-seven microbe isolates, only three (CH2, CH5, and CH9) isolates showed decolourisation zone indicating the positive presence of ligninolytic activity. The 16S rRNA gene sequence data indicated the isolates are highly homologous to Bacillus spp.


Ang, T.N., Ngoh, G.C. & Chua, A.S.M. (2011). A quantitative method for fungal ligninolytic enzyme screening studies. Asia-Pacific Journal of Chemical Engineering, 6(4): 589-595.


Archibald, F.S. (1992). A new assay for lignin-type peroxidases employing the dye Azure B. Applied and Environmental Microbiology, 58(9): 3110-3116.


Azizi-Shotorkhofta, A., Mohammadabadia, T., Motamedib, H., Chajia, M. & Fazaeli, H. (2016). Isolation and identification of termite gut symbiotic bacteria with lignocellulose-degrading potential, and their effects on the nutritive value for ruminants of some by-products. Animal Feed Science and Technology, 221(3).: 234-243.


Bandounas, L., Wierckx, N.J.P., de Winde, J.H. & Ruijssenaars, H.J. (2011). Isolation and characterisation of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnology, 11: 94.


Chandra, R. & Chowdhary, P. (2015). Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environmental Sciences: Processes and Impacts, 17(2): 326-342.


Chandra, R., Kumar, V. & Yadav, S. (2017). Extremophilic ligninolytic enzymes. In Sani, R.K., & Krishnaraj, R.N. (eds.) Extremophilic Enzymatic Processing of Lignocellulosic Feedstocks to Bioenergy. Cham, Switzerland, Springer International Publishing. Pp. 115-154.


Chang, Y.C., Choi, D., Takamizawa, K. & Kikuchi, S. (2014). Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresource Technology, 152: 429-436.


Chaurasia, B. (2019). Biological pretreatment of lignocellulosic biomass (water hyacinth) with different fungus for enzymatic hydrolysis and bio-ethanol production resource: advantages, future work and prospects. Acta Scientific Agriculture, 3(5): 89-96.

Chowdhary, P., Saxena, G. & Bharagava, R.N. (2016). Role of laccase enzyme in bioremediation of industrial wastes and it biotechnological application. In Bharagava, R.N. & Saxena, G. (eds.) Bioremendiation of Industrial Pollutants. Delhi, India, Write and Print Publication. Pp. 307-331.

Dashtban, M., Schraft, H., Syed, T.A. & Wensheng, Q. (2010). Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemistry and Molecular Biology, 1(1): 36-50.

Dheeran, P., Nandhagopal, N., Kumar, S., Jaiswal, Y. K. & Adhikari, D.K. (2012). A novel thermostable xylanase of Paenibacillus macerans IIPSP3 isolated from the termite gut. Journal of Industrial Microbiology and Biotechnology, 39(6): 851-860.


Gonzal, G., Colpa, D.I., Habib, M.H.M. & Fraaije, M. W. (2016). Bacterial enzymes involved in lignin degradation. Journal of Biotechnology, 236: 110-119.


Husain, Q. (2006). Potential applications of the oxidoreductive enzymes in the decolorisation and detoxification of textile and other synthetic dyes from polluted water: a review. Critical Reviews in Biotechnology, 26(4): 201-221.


Inagaki, T. & Matsuura, K. (2018). Extended mutualism between termites and gut microbes: nutritional symbionts contribute to nest hygiene. The Science of Nature, 105: 52.


Jalali, M. (2014). Isolation and identification of gut symbiont bacteria in the termite Anacanthotermes vagans Hagen (Isoptera: Hodotermitidae) and effects of two biopesticide compound on the termite (Master Thesis). Shahid Chamran University of Ahvaz, Iran.

Janusz, G., Pawlik, A., Sulej, J., Świderska-Burek, U., Jarosz-Wilkołazka, A. & Paszczyński, A. (2017). Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiology Reviews, 41(6): 941-962.


Kiiskinen, L.L., Ratto, M. & Kruus, K. (2004). Screening for novel laccase-producing microbes. Journal of Applied Microbiology, 97: 640-646.


Kundu, P., Manna, B., Majumder, S. & Ghosh, A. (2019). Species-wide metabolic interaction network for understanding natural lignocellulose digestion in termite gut microbiota. Scientific Reports, 9: 16329.


Lai, C. M.T., Chua, H.B., Danquah, M.K. & Saptoro, A. (2017). Isolation of thermophilic lignin degrading bacteria from oil-palm empty fruit bunch (EFB) compost. IOP Conference Series: Materials Science and Engineering, 206(1): 012016.


Manji, S. & Ishihara, A. (2004). Screening of tetrachlorodibenzo-p-dioxin-degrading fungi capable of producing extracellular peroxidases under various conditions. Applied Microbiology and Biotechnology, 63: 438-444.


Mathews, S.L., Pawlak, J.J. & Grunden, A.M. (2014). Isolation of Paenibacillus glucanolyticus from pulp mill sources with potential to deconstruct pulping waste. Bioresource Technology, 164(2014): 100-105.


Matte'otti, C., Bauwens, J., Brasseur, C., Tarayre, C., Thonart, P., Destain, J., Francis, F., Haubruge, E., De Pauw, E. & Portetelle, D. (2012). Identification and characterisation of a new xylanase from Gram-positive bacteria isolated from termite gut (Reticulitermes santonensis). Protein Expression and Purification, 83(2): 117-127.


Pangallo, D., ImonovicOva, A.S., Chovanova, K. & Ferianc, P. (2007). Wooden art objects and the museum environment: identification and bio-degradative characteristics of isolated microflora. Letters in Applied Microbiology, 45: 87-94.


Shah, T.A., Lee, C.C., Orts, W.J. & Tabassum, R. (2019). Biological pretreatment of rice straw by ligninolytic Bacillus sp. strains for enhancing biogas production. Environmental Progress & Sustainable Energy, 38(3): e13036.


Taylor, C.R., Hardiman, E.M., Ahmad, M., Sainsbury, P.D., Norris, P.R. & Bugg, T.D.H. (2012). Isolation of bacterial strains able to metabolise lignin from screening of environmental samples. Journal of Applied Microbiology, 113: 521-530.


Tian, J., Feng, J., Wang, Y., Lu, J., Mao, L. & Chu, J. (2020). A newly isolated Cerrena unicolor capable of laccase production and lignin degradation in agricultural wastes. Research Square, 1: 122812.


Wong, L.J., H'ng, P.S., Wong, S.Y., Lee, S.H., Lum, W.C., Chai, E.W., Wong, W.Z. & Chin, K.L. (2014). Termite digestomes as a potential source of symbiotic microbiota for lignocelluloses degradation: a review. Pakistan Journal of Biological Sciences, 17(8): 956-963.


Yadav, S. & Chandra, R. (2018). Detection and assessment of the phytotoxicity of residual organic pollutants in sediment contaminated with pulp and paper mill effluent. Environmental Monitoring and Assessment, 190: 581.


Yang, C.X., Wang, T., Gao, L.N., Yin, H.J. & Lü, X. (2017). Isolation, identification and characterisation of lignin-degrading bacteria from Qinling, China. Journal of Applied Microbiology, 123(6): 1447-1460.


Zainith, S., Purchase, D., Saratale, G.D., Ferreira, L.F. R., Bilal, M. & Bharagava, R.N. (2019). Isolation and characterisation of lignin-degrading bacterium Bacillus aryabhattai from pulp and paper mill wastewater and evaluation of its lignin-degrading potential. 3 Biotech, 9(3): 92.


Zhou, H., Guo, W., Xu, B., Teng, Z., Tao, D., Lou, Y. & Gao, Y. (2017). Screening and identification of lignin-degrading bacteria in termite gut and the construction of LiP-expressing recombinant Lactococcus lactis. Microbial Pathogenesis, 112: 63-69.


How to Cite
FREDDIE SIMOL, C., CHUBO, J. K., KING, P. J. H., ONG, K. H., CHEW, C., & NAWI, K. (2021). Qualitative and Molecular Screening of Potential Ligninolytic Microbes from Termite (Coptotermes curvignathus) Gut. Borneo Journal of Resource Science and Technology, 11(1), 35-42. https://doi.org/10.33736/bjrst.2879.2021