A Chemotaxonomic Study of Cuticular Hydrocarbons on Epilachna indica (Family: Coccinellidae) from Sarawak
DOI:
https://doi.org/10.33736/bjrst.239.2014Keywords:
Epilachna indica, cuticular hydrocarbon, gas chromatography-mass spectrometerAbstract
The chemical composition of cuticular hydrocarbons of adult Epilacnha indica (ladybird beetles), collected fromKota Samarahan, Kota Padawan and Lanjak-Entimau, Sarawak were analyzed by using a capillary gas
chromatography-mass spectrometer (GC-MS). Cuticular hydrocarbons extracted from 18 samples of adult E.
indica (comprise of 90 individuals). Over 95% of the hydrocarbon peak areas consist of chain lengths from C18
to C38 . The proportions of n-alkanes between three different localities are significantly difference, except for ndotriacontane
and n-tetratriacontane. Comparison between Kota Samarahan and Kota Padawan samples revealed
the significant different in hydrocarbon composition for even-numbered carbon n-alkanes ranging from n-C18 to
n-C38 except for n-C32 and n-C34 . Several odd-numbered carbon n-alkanes such as n-C25 , n-C27 , n-C33 and n-
C35 also showed significant difference in the composition between Kota Samarahan and Kota Padawan.
Examination on components contributing to the differentiation of localities showed that n-C29 , n-C33 and n-C36
were important in discriminating three different localities. Discriminant function analysis (DFA) successfully
classified all samples into three correct groups in 100% of cases, with cross-validation resulted in an error of
7.7%. Individuals from each locality were grouped in the range of 2.10 - 9.16% differences, with average of
43% different reflected between localities. E. indica samples collected from the forests containing simpler
hydrocarbon pattern than samples collected around housing or industrial areas. Result showed that differences in
microenvironment have influenced the composition and proportion of insect cuticular hydrocarbon. The finding
reveals the potential of cuticular hydrocarbons profile to separate subpopulations of species.
References
Abdalla, F.C., Jones, G.R., Morgan, E.D., & Cruz-landim, C. (2003). Comparative study of the cuticular hydrocarbons composition of Melipona bicolor (Lepeletier, 1836) (Hymenoptera, Meliponini) worker and queens. Genetic and Molecular Research, 2 (2):191-199.
Anyanwu, G.I., Molyneux, D.H., & Phillips, A. (2000). Variation in cuticular hydrocarbons among strains of the Anopheles gambiae sensu stricto by analysis of cuticular hydrocarbons using gas liquid chromatography of larvae. Annuals of Tropical Medicine and Parasitology, 95 (3):295-300.
https://doi.org/10.1590/S0074-02762000000300003
Arsene, C., Schulz, S., & Van Loon, J.J.A. (2002). Chemical polymorphism of the cuticular lipids of the cabbage white Pieris rapae. Journal of Chemical Ecology, 28(12):37-42.
https://doi.org/10.1023/A:1021474820601
Brown, W.V., Rose, H.A., & Lacey, M.J. (1997). The cuticular hydrocarbons of the soil burrowing cockroach Geoscapheus dilatatus (Saussure) (Blattodea: Blaberidae: Geoscapheinae) indicate species dimorphism. Comparative Biochemistry and Physiology, Part B 118 (3):549-562.
https://doi.org/10.1016/S0305-0491(97)00110-7
Brown, W.V., Morton, R., Lacey, M.J., Spradbery, J.P., & Mahon, R.J. (1998). Identification of the Geographical source of adults of Old World Screw Fly, Chrysomya bezziana Villeneuve (Diptera: Calliphoridae), by Multivariate Analysis of cuticular hydrocarbons. Comparative Biochemistry and Physiology, Part B 119 (2):391-399.
https://doi.org/10.1016/S0305-0491(97)00365-9
Brown, W.V., Rose, H.A., Lacey, M.J., & Wright, K. (2000). The cuticular hydrocarbons of the giant soil-burrowing cockroach Macropanesthia rhinoceros Saussure (Blattodea: Blaberidae: Geoscapheinae): Analysis with respect to age, sex and location. Comparative Biochemistry and Physiology, Part B 127 (3):261-277.
https://doi.org/10.1016/S0305-0491(00)00212-1
Chapman, R.F., Espelies, K.E., & Swords, G.A. (1995). Use of cuticular lipids in grasshopper taxonomy: A study of variation in Schistocerca shoshone (Thomas). Biochemical Systematics and Ecology, 23 (4):383-398.
https://doi.org/10.1016/0305-1978(95)00032-P
Chapman, R.F., Espelies, K.E., & Peck, S.B. (2000). Cuticular hydrocarbons of grasshoppers from the Galapagos Islands, Ecuador. Biochemical Systematics and Ecology, 28 (6):579-588.
https://doi.org/10.1016/S0305-1978(99)00094-0
Dani, F.R. (2006). Cuticular lipids as semiochemicals in paper wasps and other social insects. Annales Zoologici Fennici, 43:500-514.
El-Sayed, A.M. (2013). The Pherobase: Database of Insect Pheromones and Semiochemicals. Available from http://www.pherobase.com. Access date: 12 August 2013.
Gibbs, A., Mousseau, T.A., & Crowe, J.H. (1991). Genetic and acclimatory variation in biophysical properties of insect cuticle lipids. Proceeding of the National Academy of Science, 88 (16):7257-7260.
https://doi.org/10.1073/pnas.88.16.7257
Haverty, M.I., Page, M., Thorne, B.L., & Escoubas, P. (1991). Cuticular hydrocarbons: Species and population level discrimination in termites. United States Forest Service General Technical Report PSW, 128:15-23.
Haverty, M.I., Grace, J.K., Nelson, L.J., & Yamamoto, R.T. (1996). Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Journal of Chemical Ecology, 22(10):1813-1834.
https://doi.org/10.1007/BF02028506
Haverty, M.I., Getty, G.M., Copren, K.A., & Lewis, V.R. (2000). Size and dispersion of colonies of Reticulitermes spp. (Isoptera: Rhinotermitidae) in a wild land and a residential location in northern California. Environmental Entomology, 29(2):241-249.
https://doi.org/10.1603/0046-225X(2000)029[0241:SADOCO]2.0.CO;2
Howard, R.W. (1993). Cuticular hydrocarbons and chemical communication. In: D.W. Stanley-Samuelson, & D.R Nelson, (Eds.), Insect Lipids: Chemistry, Biochemistry and Biology. Lincoln, USA: University of Nebraska Press. Pp179-226.
Juarez, M.P. & Fernandez, G.C. (2007). Cuticular hydrocarbons of triatomines. Comparative Biochemistry and Physiology, Part A, 147(3):711-730.
https://doi.org/10.1016/j.cbpa.2006.08.031
Kosaki, A. & Yamaoka, R. (1996). Chemical composition of footprint and cuticular lipids of three species of lady beetles. Japan Journal of Applied Entomology and Zoology, 40:47-53.
https://doi.org/10.1303/jjaez.40.47
Lapointe, S.L, Hunter, W.B., & Alessandro, R.T. (2004). Cuticular hydrocarbons on elytra of the Diaprepes root weevil Diaprepes abbreviatus (Coleoptera: Curculionidae). Agricultural and Forest Entomology, 6(4):251-257.
https://doi.org/10.1111/j.1461-9555.2004.00230.x
Lockey, K.H. (1988). Lipids of the insects' cuticle: Origin, composition and function. Comparative Biochemistry and Physiology, Part B 89(4):595-645.
https://doi.org/10.1016/0305-0491(88)90305-7
Martin, S. & Drijfhout, F. (2009). A review of ant cuticular hydrocarbons. Journal of Chemical Ecology, 35(10):1151-1161.
https://doi.org/10.1007/s10886-009-9695-4
Nelson, D.R. & Charlet, L.D. (2003). Cuticular hydrocarbons of sunflower beetles, Zygogramma exclamationis. Comparative Biochemistry and Physiology, Part B, 102(3):451-470.
Noorman, N. & Den Otter, C.J. (2002). Effect of relative humidity, temperature, and population density on production of cuticular hydrcarbons in housefly Musa domestica L. Journal of Chemical Ecology, 28(9):1819-1829.
https://doi.org/10.1023/A:1020565202524
Nunes, T.M., Morgan E.D., Drijfhout, F.P., & Zucchi, R. (2010). Caste-specific cuticular lipids in the stingless bee Friesella schrottkyi. Apidologie, 41(5):579-588.
https://doi.org/10.1051/apido/2010042
Page, M., Nelson, L.J., Haverty, M.I., & Blomquist, G.J. (1990). Cuticular hydrocarbons chemotaxonomic character for bark beetles: Dendroctonus ponderosae, D. jeffreyi, D. brevicomis, and D. frontalis (Coleooptera: Scolytidae). Annual Meeting of the Entomological and Society of America, 83:892-901.
https://doi.org/10.1093/aesa/83.5.892
Phillips, A., Le Pont, F., Desjeux, P., Broomfield, G., & Molyneux, D.H. (1990). Separation of Psychodopygus carrerai carrerai and P. yucumensis (Diptera: Psychodidae) by gas chromatography of cuticular hydrocarbons. Acta Tropica, 47 (3):145-149.
https://doi.org/10.1016/0001-706X(90)90020-Z
Soliday, C.L., Blomquists, G.L., & Jackson, L.L. (1974). Cuticular lipids of insects. VI. Cuticular lipids of the grasshoppers Melanoplus sanguinipes and Melanoplus packardii. Journal of Lipid Research, 15:399-405.
https://doi.org/10.1016/S0022-2275(20)36788-2
Takematsu, Y. & Yamaoka, R. (1997). Taxonomy of Gzyptotermes (Isoptera: Kalotermitidae) in Japan with reference to cuticular hydrocarbons analysis as chemotaxonomic characters. Esakia: Occasional papers of the Hikosan Biological Laboratory in Entomology, 37:1- 14.
Tung, V.W. (1983). Common Malaysian Beetles. Kuala Lumpur, Malaysia: Longman Publication. Pp.142.
Whitlow, V.V.S. (2003). Recognition in burying beetles (Nicrophorus spp., Silphidae, Coleoptera). University of der Albert Ludwigs, Freiburg im Breisgau, Germany. Unpublished PhD Thesis.
Wilgenburg, E.V., Symonds, M.R.E., & Elgar, M.A. (2011). Evolution of cuticular hydrocarbon diversity in ants. Journal of Evolution Biology, 24:1188-1198.
https://doi.org/10.1111/j.1420-9101.2011.02248.x
Woodrow, R.J., Grace, J.K., Nelson, L.J., & Haverty, M.I. (2000). Modification of cuticular hydrocarbons of Cryptotermes brevis (Isoptera: Kalotermitidae) in response to temperature and relative humidity. Journal of Physiololgical and Chemical Ecology, 29(6):1100-1107.
Downloads
How to Cite
Issue
Section
License
Copyright Transfer Statement for Journal
1) In signing this statement, the author(s) grant UNIMAS Publisher an exclusive license to publish their original research papers. The author(s) also grant UNIMAS Publisher permission to reproduce, recreate, translate, extract or summarize, and to distribute and display in any forms, formats, and media. The author(s) can reuse their papers in their future printed work without first requiring permission from UNIMAS Publisher, provided that the author(s) acknowledge and reference publication in the Journal.
2) For open access articles, the author(s) agree that their articles published under UNIMAS Publisher are distributed under the terms of the CC-BY-NC-SA (Creative Commons Attribution-Non Commercial-Share Alike 4.0 International License) which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original work of the author(s) is properly cited.
3) For subscription articles, the author(s) agree that UNIMAS Publisher holds copyright, or an exclusive license to publish. Readers or users may view, download, print, and copy the content, for academic purposes, subject to the following conditions of use: (a) any reuse of materials is subject to permission from UNIMAS Publisher; (b) archived materials may only be used for academic research; (c) archived materials may not be used for commercial purposes, which include but not limited to monetary compensation by means of sale, resale, license, transfer of copyright, loan, etc.; and (d) archived materials may not be re-published in any part, either in print or online.
4) The author(s) is/are responsible to ensure his or her or their submitted work is original and does not infringe any existing copyright, trademark, patent, statutory right, or propriety right of others. Corresponding author(s) has (have) obtained permission from all co-authors prior to submission to the journal. Upon submission of the manuscript, the author(s) agree that no similar work has been or will be submitted or published elsewhere in any language. If submitted manuscript includes materials from others, the authors have obtained the permission from the copyright owners.
5) In signing this statement, the author(s) declare(s) that the researches in which they have conducted are in compliance with the current laws of the respective country and UNIMAS Journal Publication Ethics Policy. Any experimentation or research involving human or the use of animal samples must obtain approval from Human or Animal Ethics Committee in their respective institutions. The author(s) agree and understand that UNIMAS Publisher is not responsible for any compensational claims or failure caused by the author(s) in fulfilling the above-mentioned requirements. The author(s) must accept the responsibility for releasing their materials upon request by Chief Editor or UNIMAS Publisher.
6) The author(s) should have participated sufficiently in the work and ensured the appropriateness of the content of the article. The author(s) should also agree that he or she has no commercial attachments (e.g. patent or license arrangement, equity interest, consultancies, etc.) that might pose any conflict of interest with the submitted manuscript. The author(s) also agree to make any relevant materials and data available upon request by the editor or UNIMAS Publisher.