A Chemotaxonomic Study of Cuticular Hydrocarbons on Epilachna indica (Family: Coccinellidae) from Sarawak

Authors

  • Rizoh Bosorang
  • Zaini Assim
  • Sulaiman Hanapi

DOI:

https://doi.org/10.33736/bjrst.239.2014

Keywords:

Epilachna indica, cuticular hydrocarbon, gas chromatography-mass spectrometer

Abstract

The chemical composition of cuticular hydrocarbons of adult Epilacnha indica (ladybird beetles), collected from
Kota Samarahan, Kota Padawan and Lanjak-Entimau, Sarawak were analyzed by using a capillary gas
chromatography-mass spectrometer (GC-MS). Cuticular hydrocarbons extracted from 18 samples of adult E.
indica (comprise of 90 individuals). Over 95% of the hydrocarbon peak areas consist of chain lengths from C18
to C38 . The proportions of n-alkanes between three different localities are significantly difference, except for ndotriacontane
and n-tetratriacontane. Comparison between Kota Samarahan and Kota Padawan samples revealed
the significant different in hydrocarbon composition for even-numbered carbon n-alkanes ranging from n-C18 to
n-C38 except for n-C32 and n-C34 . Several odd-numbered carbon n-alkanes such as n-C25 , n-C27 , n-C33 and n-
C35 also showed significant difference in the composition between Kota Samarahan and Kota Padawan.
Examination on components contributing to the differentiation of localities showed that n-C29 , n-C33 and n-C36
were important in discriminating three different localities. Discriminant function analysis (DFA) successfully
classified all samples into three correct groups in 100% of cases, with cross-validation resulted in an error of
7.7%. Individuals from each locality were grouped in the range of 2.10 - 9.16% differences, with average of
43% different reflected between localities. E. indica samples collected from the forests containing simpler
hydrocarbon pattern than samples collected around housing or industrial areas. Result showed that differences in
microenvironment have influenced the composition and proportion of insect cuticular hydrocarbon. The finding
reveals the potential of cuticular hydrocarbons profile to separate subpopulations of species.

References

Abdalla, F.C., Jones, G.R., Morgan, E.D., & Cruz-landim, C. (2003). Comparative study of the cuticular hydrocarbons composition of Melipona bicolor (Lepeletier, 1836) (Hymenoptera, Meliponini) worker and queens. Genetic and Molecular Research, 2 (2):191-199.

Anyanwu, G.I., Molyneux, D.H., & Phillips, A. (2000). Variation in cuticular hydrocarbons among strains of the Anopheles gambiae sensu stricto by analysis of cuticular hydrocarbons using gas liquid chromatography of larvae. Annuals of Tropical Medicine and Parasitology, 95 (3):295-300.

https://doi.org/10.1590/S0074-02762000000300003

Arsene, C., Schulz, S., & Van Loon, J.J.A. (2002). Chemical polymorphism of the cuticular lipids of the cabbage white Pieris rapae. Journal of Chemical Ecology, 28(12):37-42.

https://doi.org/10.1023/A:1021474820601

Brown, W.V., Rose, H.A., & Lacey, M.J. (1997). The cuticular hydrocarbons of the soil burrowing cockroach Geoscapheus dilatatus (Saussure) (Blattodea: Blaberidae: Geoscapheinae) indicate species dimorphism. Comparative Biochemistry and Physiology, Part B 118 (3):549-562.

https://doi.org/10.1016/S0305-0491(97)00110-7

Brown, W.V., Morton, R., Lacey, M.J., Spradbery, J.P., & Mahon, R.J. (1998). Identification of the Geographical source of adults of Old World Screw Fly, Chrysomya bezziana Villeneuve (Diptera: Calliphoridae), by Multivariate Analysis of cuticular hydrocarbons. Comparative Biochemistry and Physiology, Part B 119 (2):391-399.

https://doi.org/10.1016/S0305-0491(97)00365-9

Brown, W.V., Rose, H.A., Lacey, M.J., & Wright, K. (2000). The cuticular hydrocarbons of the giant soil-burrowing cockroach Macropanesthia rhinoceros Saussure (Blattodea: Blaberidae: Geoscapheinae): Analysis with respect to age, sex and location. Comparative Biochemistry and Physiology, Part B 127 (3):261-277.

https://doi.org/10.1016/S0305-0491(00)00212-1

Chapman, R.F., Espelies, K.E., & Swords, G.A. (1995). Use of cuticular lipids in grasshopper taxonomy: A study of variation in Schistocerca shoshone (Thomas). Biochemical Systematics and Ecology, 23 (4):383-398.

https://doi.org/10.1016/0305-1978(95)00032-P

Chapman, R.F., Espelies, K.E., & Peck, S.B. (2000). Cuticular hydrocarbons of grasshoppers from the Galapagos Islands, Ecuador. Biochemical Systematics and Ecology, 28 (6):579-588.

https://doi.org/10.1016/S0305-1978(99)00094-0

Dani, F.R. (2006). Cuticular lipids as semiochemicals in paper wasps and other social insects. Annales Zoologici Fennici, 43:500-514.

El-Sayed, A.M. (2013). The Pherobase: Database of Insect Pheromones and Semiochemicals. Available from http://www.pherobase.com. Access date: 12 August 2013.

Gibbs, A., Mousseau, T.A., & Crowe, J.H. (1991). Genetic and acclimatory variation in biophysical properties of insect cuticle lipids. Proceeding of the National Academy of Science, 88 (16):7257-7260.

https://doi.org/10.1073/pnas.88.16.7257

Haverty, M.I., Page, M., Thorne, B.L., & Escoubas, P. (1991). Cuticular hydrocarbons: Species and population level discrimination in termites. United States Forest Service General Technical Report PSW, 128:15-23.

Haverty, M.I., Grace, J.K., Nelson, L.J., & Yamamoto, R.T. (1996). Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Journal of Chemical Ecology, 22(10):1813-1834.

https://doi.org/10.1007/BF02028506

Haverty, M.I., Getty, G.M., Copren, K.A., & Lewis, V.R. (2000). Size and dispersion of colonies of Reticulitermes spp. (Isoptera: Rhinotermitidae) in a wild land and a residential location in northern California. Environmental Entomology, 29(2):241-249.

https://doi.org/10.1603/0046-225X(2000)029[0241:SADOCO]2.0.CO;2

Howard, R.W. (1993). Cuticular hydrocarbons and chemical communication. In: D.W. Stanley-Samuelson, & D.R Nelson, (Eds.), Insect Lipids: Chemistry, Biochemistry and Biology. Lincoln, USA: University of Nebraska Press. Pp179-226.

Juarez, M.P. & Fernandez, G.C. (2007). Cuticular hydrocarbons of triatomines. Comparative Biochemistry and Physiology, Part A, 147(3):711-730.

https://doi.org/10.1016/j.cbpa.2006.08.031

Kosaki, A. & Yamaoka, R. (1996). Chemical composition of footprint and cuticular lipids of three species of lady beetles. Japan Journal of Applied Entomology and Zoology, 40:47-53.

https://doi.org/10.1303/jjaez.40.47

Lapointe, S.L, Hunter, W.B., & Alessandro, R.T. (2004). Cuticular hydrocarbons on elytra of the Diaprepes root weevil Diaprepes abbreviatus (Coleoptera: Curculionidae). Agricultural and Forest Entomology, 6(4):251-257.

https://doi.org/10.1111/j.1461-9555.2004.00230.x

Lockey, K.H. (1988). Lipids of the insects' cuticle: Origin, composition and function. Comparative Biochemistry and Physiology, Part B 89(4):595-645.

https://doi.org/10.1016/0305-0491(88)90305-7

Martin, S. & Drijfhout, F. (2009). A review of ant cuticular hydrocarbons. Journal of Chemical Ecology, 35(10):1151-1161.

https://doi.org/10.1007/s10886-009-9695-4

Nelson, D.R. & Charlet, L.D. (2003). Cuticular hydrocarbons of sunflower beetles, Zygogramma exclamationis. Comparative Biochemistry and Physiology, Part B, 102(3):451-470.

Noorman, N. & Den Otter, C.J. (2002). Effect of relative humidity, temperature, and population density on production of cuticular hydrcarbons in housefly Musa domestica L. Journal of Chemical Ecology, 28(9):1819-1829.

https://doi.org/10.1023/A:1020565202524

Nunes, T.M., Morgan E.D., Drijfhout, F.P., & Zucchi, R. (2010). Caste-specific cuticular lipids in the stingless bee Friesella schrottkyi. Apidologie, 41(5):579-588.

https://doi.org/10.1051/apido/2010042

Page, M., Nelson, L.J., Haverty, M.I., & Blomquist, G.J. (1990). Cuticular hydrocarbons chemotaxonomic character for bark beetles: Dendroctonus ponderosae, D. jeffreyi, D. brevicomis, and D. frontalis (Coleooptera: Scolytidae). Annual Meeting of the Entomological and Society of America, 83:892-901.

https://doi.org/10.1093/aesa/83.5.892

Phillips, A., Le Pont, F., Desjeux, P., Broomfield, G., & Molyneux, D.H. (1990). Separation of Psychodopygus carrerai carrerai and P. yucumensis (Diptera: Psychodidae) by gas chromatography of cuticular hydrocarbons. Acta Tropica, 47 (3):145-149.

https://doi.org/10.1016/0001-706X(90)90020-Z

Soliday, C.L., Blomquists, G.L., & Jackson, L.L. (1974). Cuticular lipids of insects. VI. Cuticular lipids of the grasshoppers Melanoplus sanguinipes and Melanoplus packardii. Journal of Lipid Research, 15:399-405.

https://doi.org/10.1016/S0022-2275(20)36788-2

Takematsu, Y. & Yamaoka, R. (1997). Taxonomy of Gzyptotermes (Isoptera: Kalotermitidae) in Japan with reference to cuticular hydrocarbons analysis as chemotaxonomic characters. Esakia: Occasional papers of the Hikosan Biological Laboratory in Entomology, 37:1- 14.

Tung, V.W. (1983). Common Malaysian Beetles. Kuala Lumpur, Malaysia: Longman Publication. Pp.142.

Whitlow, V.V.S. (2003). Recognition in burying beetles (Nicrophorus spp., Silphidae, Coleoptera). University of der Albert Ludwigs, Freiburg im Breisgau, Germany. Unpublished PhD Thesis.

Wilgenburg, E.V., Symonds, M.R.E., & Elgar, M.A. (2011). Evolution of cuticular hydrocarbon diversity in ants. Journal of Evolution Biology, 24:1188-1198.

https://doi.org/10.1111/j.1420-9101.2011.02248.x

Woodrow, R.J., Grace, J.K., Nelson, L.J., & Haverty, M.I. (2000). Modification of cuticular hydrocarbons of Cryptotermes brevis (Isoptera: Kalotermitidae) in response to temperature and relative humidity. Journal of Physiololgical and Chemical Ecology, 29(6):1100-1107.

https://doi.org/10.1603/0046-225X-29.6.1100

Downloads

How to Cite

Bosorang, R., Assim, Z., & Hanapi, S. (2016). A Chemotaxonomic Study of Cuticular Hydrocarbons on Epilachna indica (Family: Coccinellidae) from Sarawak. Borneo Journal of Resource Science and Technology, 4(1), 9–18. https://doi.org/10.33736/bjrst.239.2014

Issue

Section

General