The Supercritical Fluid Extraction of Alkaloids from Papaya (Carica papaya L. var. Eksotika) Leaves

Authors

  • Mohamad Fhaizal Mohamad Bukhari
  • Noorsaadah Abdul Rahman
  • Norzulaani Khalid
  • Ahmad Hazri Rashid
  • Mazita Mohd Diah

DOI:

https://doi.org/10.33736/bjrst.234.2014

Keywords:

Alkaloids, Carica papaya, Eksotika, supercritical fluid extraction

Abstract

Since the isolation procedures are easy, many of the earliest pure compounds isolated with biological activity
were alkaloids. The nitrogen molecules in plant cells generally make the compound alkaline which make
alkaloids exist in a salt form in plants. Thus, alkaloids are often extracted with water and/or acid solution system
and then recovered as crystalline material by treatment using a base. The alkaloid carpaine was extracted from
various part of Carica papaya L. var. Eksotika from field grown samples namely leaves, petiole and fruit peel,
and from in vitro samples namely leaves, petiole, suspension cells and suspension liquid with only one artifact of
impurity detected i.e. dehydrocarpaine II. Supercritical fluid extraction was analysed to obtain pure and high
yield of carpaine compound as compared to conventional acid base extraction method. The ratio of
ethanol/water/acetic acid used at 94.5:5:0.5 (v/v/v) was confirmed to be a better solvent system for carpaine
extraction since only one pseudocarpaine i.e. dehydrocarpaine II was extracted together with carpaine. In this
study, the application of single fluid of carbon dioxide in supercritical fluid extraction procedure generated pure
and higher yield of carpaine compound. Additional centrifugation step should have contributed to a higher purity
of the extracted carpaine.

References

Azarkan, M., El Moussaoui, A., van Wuytswinkel, D., Dehon, G., & Looze, Y. (2003). Fractionation and purification of the enzymes stored in the latex of Carica papaya. Journal of Chromatography B, 790: 229-238.

https://doi.org/10.1016/S1570-0232(03)00084-9

Barger, G., Robinson, R., & Short, W.F. (1937). Synthetical experiments relating to carpaine. II. Journal of the Chemical Society, 715-718.

https://doi.org/10.1039/jr9370000715

Barger, G., Robinson, R., & Smith, L.H. (1937). Synthetical experiments relating to carpaine. III. Some derivatives of tetrahydrofuran and intermediates of the aliphatic series. Journal of the Chemical Society, 718-725.

https://doi.org/10.1039/jr9370000718

Barger, G., Robinson, R., & Urushibara, Y. (1937). Synthetical experiments relating to carpaine. I. Synthesis of a basic long-chain lactone. Journal of the Chemical Society, 714-715.

https://doi.org/10.1039/jr9370000714

Bevan, C.W.L. & Ogan, A.U. (1964). Studies on West African medicinal Plants-I. Biogenesis of Carpaine in Carica papaya Linn. Phytochemistry, 3: 591-594.

https://doi.org/10.1016/S0031-9422(00)82933-7

Brown, E. & Robert, D. (1972). Total synthesis of alkaloids in carpaine and cassine series. I. Model reactions. Synthesis of 2, 6-dialkyl-3-piperidinols. Bulletin de la Societe Chimique de France, 11: 4293-4303.

Brown, E. & Bourgouin, A. (1975). Total synthesis of alkaloids of the carpaine and cassine series V. Total synthesis of (±)-carpamic acid. Tetrahedron, 31(8): 1047-1051.

https://doi.org/10.1016/0040-4020(75)80125-6

Brown, E., Guilmet, E., & Touet, J. (1973). Total synthesis of alkaloids in the carpaine and cassine series. III. Two general methods for synthesis of 4,4-(ethylenedioxy) aldehydes. Tetrahedron, 29(17): 2589-2596.

https://doi.org/10.1016/0040-4020(73)80178-4

Brown, E., Lavoue, J., & Dhal, R. (1973). Total synthesis of alkaloids of the carpaine and the cassine series. II. Biogenetic-type total synthesis of pseudoconhydrine. Tetrahedron, 29(2): 455-461.

https://doi.org/10.1016/S0040-4020(01)93317-4

Burdick, E.M. (1971). Carpaine: An alkaloid of Carica papaya-Its chemistry and pharmacology. Economic Botany, 25(4): 363-365.

https://doi.org/10.1007/BF02985202

Cheng, Y.C. & Tsai, S.W. (2004). Enantioselective esterification of (RS)-2-(4-chlorophenoxy)-propionic acid via Carica papaya lipase in organic solvents. Tetrahedron: Asymmetry, 15: 2917-2920.

https://doi.org/10.1016/j.tetasy.2004.05.036

Coke, J.L. & Rice Jr., W.Y. (1968). The absolute configuration of carpaine. The Journal of Organic Chemistry, 30: 3420-3422.

https://doi.org/10.1021/jo01021a036

Corey, E.J., Nicolaou, K.C., & Melvin Jr., L.S. (1975). Synthesis of brefeldin A, carpaine, vertaline and erythronolide B from nonmacrocyclic precursors. Journal of the American Chemical Society, 97(3): 654-655.

https://doi.org/10.1021/ja00836a037

Ellis, B.E., Kuroki, G.W., & Stafford, H.A. (1994). Recent advances in phytochemistry: Genetic engineering of plant secondary metabolism, volume 28. New York: Plenum Press.

https://doi.org/10.1007/978-1-4615-2544-8

Eric, B. & Alain, B. (1981). Studies on the total synthesis of carpaine and cassine series alkaloids. VII. Total synthesis of (±)-cassine. Bulletin de la Societe Chimique de France, 2(7/8): 281-287.

Eric, B. & Robert, D. (1976). Studies related to the total synthesis of alkaloids in the carpaine and cassine series. Part 6. Total synthesis of (±)-azimic acid. Organic and Bio-organic Chemistry, 20: 2190-2193.

https://doi.org/10.1039/P19760002190

Facchini, P.J. (2001). Alkaloid biosynthesis in plants: Biochemistry, cell biology, molecular regulation and metabolic engineering applications. Annual Review of Plant Physiology and Plant Molecular Biology, 52: 29-66.

https://doi.org/10.1146/annurev.arplant.52.1.29

Govindachari, T.R. (2002). Five decades in the study of natural products. Journal of Chemical Sciences, 114(3): 175-195.

https://doi.org/10.1007/BF02704262

Govindachari, T.R., Pai, B.R., & Narasimhan, N.S. (1954). Pseudocarpaine, a new alkaloid from Carica papaya. Journal of the Chemical Society, 1847-1849.

https://doi.org/10.1039/jr9540001847

Hagendoom, M.J.M., Wagner, A.M., Segers, C., van der Plas, L.H.W., Oostdam, A., & van Walraven, H.S. (1994). Cytoplasmic acidification and secondary metabolite production in different plant cell suspensions': A comparative study. Plant Physiology, 106: 723-730.

https://doi.org/10.1104/pp.106.2.723

Heldt, H.W. (1997). Plant biochemistry and molecular biology. New York: Oxford University Press.

Hornick, C.A., Sanders, L.I., & Lin, Y.C. (1978). Effect of carpaine, a papaya alkaloid, on the circulatory function in the rat. Research Communications in Chemical Pathology and Pharmacology, 2(22): 277-299.

Jacques, F., Alain, D., Anna, K., Chantal, E., Bridget, H., & Francois, S. (1997). Novel carpaine-derived macrocyclic ethers. Geneva: The Patent Cooperation Treaty. Pp 31.

Jacques, F., Stylianos, M., Dennis, B., Anna, K., and Robert, K. (1994). Preparation of carpaine diamide anticancer agents. Paris: Fr. Demande. Pp 16.

Jacques, F., Stylianos, M., Dennis, B., Anna, K., & Robert, K. (1994). Preparation of synthetic carpaine monoamides and their use as anticancer drugs. Geneva: The Patent Cooperation Treaty. Pp 22.

Jørgensen, K., Rasmussen, A.V., Morant, M., Nielsen, A.H., Bjarnholt, N., Zagrobelny, M., Bak, S., & Møller, B. L. (2005). Metabolon formation and metabolic channeling in plant secondary metabolism able plants to effectively synthesize. Current Opinion in Plant Biology, 8: 280-291.

https://doi.org/10.1016/j.pbi.2005.03.014

Kabaleeswaran, V., Rajan, S.S., Krishnakumari, G.N., & Govindachari, T.R. (1999). Conformational flexibility of carpaine and its hydrobromide derivative. Acta Crystallographica, Section C: Crystal Structure Communications, 55(11): 1935-1937.

https://doi.org/10.1107/S0108270199008938

Khuzhaev, V.U. & Aripova, S.F. (2000). Pseudocarpaine from Carica papaya. Chemistry of Natural Compounds, 36(4): 418.

https://doi.org/10.1023/A:1002869603568

Knez, Ž, Habulin, M., & Primožĭč, M. (2003). Hydrolases in supercritical CO2 and their use in a high-pressure membrane reactor. Bioprocess and Biosystems Engineering, 25: 279-284.

https://doi.org/10.1007/s00449-002-0314-9

Mahmood, K. & Abd. Rahman, N. (1998). Kaedah spektroskopi dalam pengenalpastian sebatian organik. Kuala Lumpur: Penerbit Universiti Malaya.

Martin, S.F. (1997). General strategies for the stereoselective synthesis of alkaloid natural products. Pure and Applied Chemistry, 69(3): 571-576.

https://doi.org/10.1351/pac199769030571

Menzella, H.G., Reid, R., Carney, J.R., Chandran, S.S., Reisinger, S.J., Patel, K.G., Hopwood, D.A., & Santi, D.V. (2005). Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nature Biotechnology, 23:1171-1176.

https://doi.org/10.1038/nbt1128

Michel, P. & Eric, B. (1985). Studies related to the total synthesis of alkaloids in the carpaine and cassine series. Part 8. Total syntheses of (±)-spicigerine, methyl (±)-spicigerinate and (±)-spectaline. Journal of Chemical Research, 9: 278-279.

Namdeo, A.G. (2007). Plant cell elicitation for production of secondary metabolites: A review. Pharmacognosy Reviews, 1(1): 69-79.

Newman, D.J., Cragg, G.M., & Snader, K.M. (2003). Natural products as sources of new drugs over the period 1981-2002. Journal of Natural Products, 66: 1022-1037.

https://doi.org/10.1021/np030096l

Nitsawang, S., Hatti-Kaul, R., & Kanasawud, P. (2006). Purification of papain from Carica papaya latex: Aqueous two-phase extraction versus two-step salt precipitation. Enzyme and Microbial Technology, 39: 1103-1107.

https://doi.org/10.1016/j.enzmictec.2006.02.013

Nossack, A.C., Vilegas, J.H.Y., von Baer, D., & Lanças, F.M. (2000). Supercritical fluid extraction and chromatographic analysis (HRGC-FID and HRGC-MS) of Lupinus spp. alkaloids. Journal of the Brazilian Chemical Society, 11(5): 495-501.

https://doi.org/10.1590/S0103-50532000000500011

O'Neil, M., Smith, A., Heckelman, P.E., Obenchain Jr., J.R., Gallipeau, J.A.R., D'Arecca, M.A., & Budavari, S. (2001). The Merck Index (13th eds.). New Jersey: Merck & Co., Inc.

Ogan, A.U. (1970). Caricaceae: The basic constituents of the leaves of Carica papaya. Phytochemical Reports, 10: 2544-2547.

https://doi.org/10.1016/S0031-9422(00)89908-2

Oksman-Caldentey, K.M. & Inzé, D. (2004). Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. TRENDS in Plant Science, 10: 1-19.

https://doi.org/10.1016/j.tplants.2004.07.006

Passera, C. & Spettoli, P. (1981). Chemical composition of papaya seeds. Plant Foods for Human Nutrition, 31: 77-83.

https://doi.org/10.1007/BF01093891

Rajnikant, Dinesh & Kamni. (2005). Weak CH…O hydrogen bonds in alkaloids: An overview. Bulletin of Materials Science, 28(3): 187-198.

https://doi.org/10.1007/BF02711246

Rapoport, H. & Baldridge Jr., H.D. (1952). The Nitrogen-containing ring of Carpaine, Journal of The American Chemical Society, 74(21): 5365-5368.

https://doi.org/10.1021/ja01141a044

Rice Jr., W.Y. (1967). The absolute configuration of carpaine. The structure and stereochemistry of cassine. Synthetic studies related to crinine. Dissertation Abstracts International [Section] B, 27(8): 2657.

Rice Jr., W.Y. & Coke, J.L. (1965). The absolute configuration of carpaine. Journal of Organic Chemistry, 30(10): 3420-3422.

https://doi.org/10.1021/jo01021a036

Sato, T., Aoyagi, S., & Kibayashi, C. (2003). Enantioselective total synthesis of (+)-azimine and (+)-carpaine. Organic Letters, 5(21):3839-3842.

https://doi.org/10.1021/ol030088w

Satoh, S. & Flores, H.E. (1990). Plant, genes and agriculture. Chapter 14: Valuable Chemicals from Plant Cell and Tissue Culture, 384-399.

Tang, C.S. (1978). New macrocyclic Δ1-piperideine alkaloids from papaya leaves: dehydrocarpaine I and II. Phytochemistry, 18: 651-652.

https://doi.org/10.1016/S0031-9422(00)84279-X

Tang, C.S. & Takenaka, T. (1983). Quantification of a bioactive metabolite in undisturbed rhizosphere-Benzyl isothiocyanate from Carica papaya L. Journal of Chemical Ecology, 9(8): 1247-1252.

https://doi.org/10.1007/BF00982226

Topuriya, L.I. (1983). Carica papaya alkaloids. II. Khimiya Prirodnykh Soedinenii, 2: 243.

Verpoorte, R., van der Heijden, R., Hoge, J.H.C., and ten Hoopen, H.J.G. (1994). Plant cell biotechnology for the production of secondary metabolites. Pure and Applied Chemistry, 66(10/11): 2307-2310.

https://doi.org/10.1351/pac199466102307

Yamamoto, H. & Tabata, M. (1989). Correlation of papain-like production with laticifer formation in somatic embryos of papaya. Plant Cell Reports, 8: 251-254.

https://doi.org/10.1007/BF00778545

Yazaki, K. (2005). Transporters of secondary metabolites. Current Opinion in Plant Biology, 8: 301-307.

https://doi.org/10.1016/j.pbi.2005.03.011

Downloads

How to Cite

Mohamad Bukhari, M. F., Abdul Rahman, N., Khalid, N., Rashid, A. H., & Mohd Diah, M. (2016). The Supercritical Fluid Extraction of Alkaloids from Papaya (Carica papaya L. var. Eksotika) Leaves. Borneo Journal of Resource Science and Technology, 4(2), 35–49. https://doi.org/10.33736/bjrst.234.2014

Issue

Section

General