Application of PCR-Based DNA Fingerprinting Techniques for the Genetic Differentiation of Vibrio cholerae Non-01/Non-0139 Isolates from Kuching, Sarawak

  • Mickey Vincent
  • Lee San Lai
  • Lee Tze Ng Ng
  • Kasing Apun
Keywords: V. cholerae non-01/non-0139, DNA fingerprinting, RAPD-PCR, ERIC-PCR, BOX-PCR

Abstract

Fifty-four Vibrio cholerae non-01/non-0139 isolates were evaluated for their genetic diversity via randomly amplified polymorphic DNA-PCR (RAPD-PCR), enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) and BOX-PCR assays. Based on the various PCR fingerprints, the V. cholerae isolates were successfully differentiated into 39 types by RAPD-PCR, 43 types by ERIC-PCR, and 38 types by the BOX PCR, with the overall average polymorphic distances observed to be at 0.593, 0.527 and 0.504, respectively. The Simpson’s index of diversity of the isolates based on the fingerprinting analyses indicated that these DNA fingerprinting methods have high discriminatory power 0.986 (RAPD-PCR), 0.992 (ERIC-PCR) and 0.983 (BOX-PCR), and could be used independently or as supplements to other methods for the epidemiological investigation of the V. cholerae from water and seafood sources. The dendrograms constructed also showed that the V. cholerae isolates were clustered into several main clusters and sub-clusters, suggesting that different strains were circulating in the water environment and in the seafood sources. We conclude that molecular genotyping of V. cholerae isolates from surface water and seafood samples in Kuching, Sarawak (Malaysia) enabled high level observation of clonal diversity within V. cholerae isolates, and is directly applicable for the molecular epidemiological studies of the V. cholerae isolates.

References

Al-Haddawi, M.H., Jasni, S., Son, R., Mutablib, A.R., Bahaman, A.R., Saad, M.Z., & Omar, M.Z. (1999). Molecular characterization of Pasteurella multocida isolates from rabbits. Journal of General and Applied Microbiology, 45: 269-275.

https://doi.org/10.2323/jgam.45.269

Armstrong, J., Gibbs, A., Peakall, R., & Weiller, G. (1996). The RAPDistance package, Version 1.04. http://life.anu.edu.au/molecular/software/rapd.htm. Downloaded on 12.06.2006.

Bakhshi, B., Barzelighi, H.M., Adabia, M., Larib, A.R., & Pourshafie, M.R. (2009). A molecular survey on virulence associated genotypes of non-O1 non-O139 Vibrio cholerae in aquatic environment of Tehran, Iran. Water Research, 43: 1441-1447.

https://doi.org/10.1016/j.watres.2008.12.025

Banerjee, R., Das, B., Nair, G.B., & Basak, S. (2014). Dynamics in genome evolution of Vibrio cholerae. Infection, Genetics and Evolution, 23: 32-41.

https://doi.org/10.1016/j.meegid.2014.01.006

Choopun, N., Louis, V., Hug, A., & Colwell, R.R. (2002). Simple procedures for rapid identification of Vibrio cholerae from the aquatic environment. Applied and Environmental Microbiology, 68: 995-998.

https://doi.org/10.1128/AEM.68.2.995-998.2002

Fooladi, A.A.I, Iman Islamieh, D., Hosseini Doust, R., Karami, A., & Marashi, S.M. (2013). Design of a multiplex PCR method for detection of toxigenic-pathogenic in Vibrio cholerae. Asian Pacific Journal of Tropical Medicine, 6: 115-118.

https://doi.org/10.1016/S1995-7645(13)60005-X

Hunter, P.R., & Gaston, M.A. (1988). Numerical index of the discriminatory ability of typing systems: an application of Simpson's Index of Diversity. Journal of Clinical Microbiology, 26: 2465-2466.

https://doi.org/10.1128/jcm.26.11.2465-2466.1988

Jiang, S.C., Louis, V., Choopun, N., Sharma, A., Hug, A., & Colwell, R.R. (2000). Genetic diversity of Vibrio cholerae in Chesapeake Bay determined by amplified fragment length polymorphism fingerprinting. Applied and Environmental Microbiology, 66: 148-153.

https://doi.org/10.1128/AEM.66.1.140-147.2000

Lesley, M.B., Velnetti, L., Cheah, Y.K., Son, R., Kasing, A., Samuel, L., Micky, V., & Nishibuchi, M. (2011). Antibiotic resistance and plasmid profiling of Vibrio parahaemolyticus isolated from cockles (Anadara granosa) at Tanjung Karang, Kuala Selangor. International Food Reserch Journal, 18: 1183-1188.

Li, J., & Ferguson, J.W.H. (1990). Neighbour-joining tree and UPGMA tree software. http://life.anu.edu.au/molecular/software/rapd.html. Downloaded on 12.06.2006.

Lipp, E.K., Huq, A., & Colwell, R.R. (2002). Effects of global climate on infectious disease: The cholera model. Clinical Microbiology Review, 15: 757-770.

https://doi.org/10.1128/CMR.15.4.757-770.2002

Marshall, S.C., Clark, G., Wang, G., Mulvey, M., Kelly, M.T., & Johnson, W.M. (1999). Comparison of molecular methods for typing Vibrio parahaemolyticus. Journal of Clinical Microbiology, 37: 2473-2478.

https://doi.org/10.1128/JCM.37.8.2473-2478.1999

Micky, V., Nur Quraitu' Aini, T., Velnetti, L., Patricia Rowena, M.B., Christy, C., & Lesley Maurice, B. (2014). Development of a SYBR green based real-time polymerase chain reaction assay for specific detection and quantification of Vibrio parahaemolyticus from food and environmental samples. International Food Research Journal, 21: 921-927.

Morita, M., Ohnishi, M., Arakawa, E., Yamamoto, S., Nair, G.B., Matsushita, S., Yokoyama, K., Kai, A., Seto, K., Watanabe, H., & Izumiya, H. (2010). Emergence and genetic diversity of El Tor Vibrio cholerae O1 that possess classical biotype ctxB among travel-associated cases of cholera in Japan. Journal of Medical Microbiology, 59: 708-712.

https://doi.org/10.1099/jmm.0.017624-0

Nei, M., & Li, W.H. (1979). Mathematical model for studying genetic variation in terms of restriction endonuclease. Proceeding of the National Academy of Science, 76: 5269-5273.

https://doi.org/10.1073/pnas.76.10.5269

Rivera, I.G., Chowdhury, M.A.R., Huq, A., Jacobs, D., Martins, M.T., & Colwell, R.R. (1995). Enterobacterial repetitive intergenic consensus sequences and the PCR to generate fingerprints of genomic DNAs from Vibrio cholerae O1, O139 and non-O1 strains. Applied and Environmental Microbiology, 61: 2898-2904.

https://doi.org/10.1128/aem.61.8.2898-2904.1995

Son, R., Micky, V., Kasing, A., Raha, A.R., Patrick, G.B., Yuherman, & Gulam, R. (2002). Molecular characterization of Vibrio cholerae O1 outbreak strains in Miri, Sarawak (Malaysia). Acta Tropicana, 83: 169-176.

https://doi.org/10.1016/S0001-706X(02)00110-9

Tapchaisri, P., Na-Ubol, M., Jaipaew, J., Srimanote, P., Chongsa-nguan, M., Yamasaki, S., Hayashi, H., Nair, G.B., Kurazono, H., & Chaicumpa, W. (2007). Virulence genes of clinical Vibrio cholerae O1 isolates in Thailand and their ribotypes. Journal of Infection, 55: 557-565.

https://doi.org/10.1016/j.jinf.2007.08.001

Zhang, J., Diao, B., Zhang, Na., Cui, Z., Zhang, L., Xu, J., & Kan, B. (2007). Comparison of different electrophoretic parameters of Pulse-Field Gel Electrophoresis for Vibrio cholerae subtyping. Journal of Microbiological Methods, 71: 15-22.

https://doi.org/10.1016/j.mimet.2007.07.002

Zhang, P., Zhou, H., Kan, B., & Wang, D. (2013). Novel ctxB variants of Vibrio cholerae O1 isolates, China. Infection, Genetics and Evolution, 20: 48-53.

https://doi.org/10.1016/j.meegid.2013.08.004

Zhou, H., Zhao, X., Wua, R., Cui, Z., Diao, B., Li, J., Wang, D., Kan, B., & Liang, W. (2014). Population structural analysis of O1 El Tor Vibrio cholerae isolated in China among the seventh cholera pandemic on the basis of multilocus sequence typing and virulence gene profiles. Infection, Genetics and Evolution, 22: 72-80.

https://doi.org/10.1016/j.meegid.2013.12.016

How to Cite
Vincent, M., Lai, L. S., Ng, L. T. N., & Apun, K. (1). Application of PCR-Based DNA Fingerprinting Techniques for the Genetic Differentiation of Vibrio cholerae Non-01/Non-0139 Isolates from Kuching, Sarawak. Borneo Journal of Resource Science and Technology, 4(2), 21-34. https://doi.org/10.33736/bjrst.233.2014
Section
General