Application of Real Time PCR for the Detection and Enumeration of Vibrio parahaemolyticus from Seafood in Sarawak (Malaysia)

Authors

  • Lesley Maurice Bilung
  • Velnetti Linang
  • Kasing Apun
  • Samuel Lihan
  • Cheah Yoke Kqueen
  • Mickey Vincent

DOI:

https://doi.org/10.33736/bjrst.224.2015

Keywords:

Detection, enumeration, real-time PCR, seafood, Vibrio parahaemolyticus

Abstract

Vibrio parahaemolyticus has been associated as the major cause of food poisoning and gastroenteritis in many
countries including Southeast Asia. Their human infection is regularly associated with the consumption of raw
or undercooked seafood and contaminated water supplies. A rapid method of detection is important to monitor
the occurrence of V. parahaemolyticus in both food and environment samples especially in Malaysia. Thus, the
aim of this study was to detect and enumerate V. parahaemolyticus from seafood by using the real-time PCR
based on the SYBR green assay. targeting the thermolabile (tl) gene. The assay was applied on 24 seafood
samples comprised of 6 cockles, 6 prawns, 6 squids and 6 fishes. In this study, all of the six cockles and prawns
were positive for the presence of V. parahaemolyticus while fish samples have only 2 positive isolates.
However, this study recorded no presence of V. parahaemolyticus in squids. Overall, the real-time PCR assay
was proven to be highly specific, and is sensitive in detecting and enumerating V. parahaemolyticus in the
seafood samples. In addition, this study has proven that seafood (especially cockles and prawns) are potential
sources for V. parahaemolyticus.

References

Adams, M.R. & Moss, M.O. (2002). Food microbiology. United Kingdom: The Royal Society of Chemistry. Adebayo-Tayo, B.C., Okonko, I.O., John, M.O., Odu, N.N., Nwanze, J.C., & Ezediokpu, N. (2011). Occurrence of potentially pathogenic Vibrio species in seafoods obtained from Oron Creek. Advance Biomedical Research, 5(6): 356-365.

Arikawa, E., Sun, Y., Zhou, Q., Ning, B., Dial, S.L., Guo, L., & Yang, J. (2008). Crossplatform comparison of SYBR Green realtime PCR with Taqman PCR, microarrays and other gene expression measurements technologies evaluated in the Microarray Quality Control (MAQC) study. BMC Genomics, 9: 328.

https://doi.org/10.1186/1471-2164-9-328

Barbau-Piednoir, E., Botteldoorn, N., Yde, M., Mahillon, J., & Roosens, N.H. (2013). Development and validation of qualitative SYBR®Green real - time PCR for detection and discrimination of Listeria spp. and Listeria monocytogenes. Applied Microbiology and Biotechnology, 97: 4021-4037.

https://doi.org/10.1007/s00253-012-4477-2

Barkallah, M., Fendri, I., Dhieb, A., Gharbi, Y., Greub, G., & Gdoura, R. (2013). First detection of Waddlia chondrophila in Africa using SYBR Green real-time PCR on veterinary samples. Veterinary Microbiology, 164(1-2): 101-107.

https://doi.org/10.1016/j.vetmic.2013.01.036

Blackstone, G.M., Nordstrom, J.L., Vickery, C.L.M., Bowen, M.D., Meyer, R.F., & DePaola, A. (2003). Detection of pathogenic Vibrio parahaemolyticus in oyster. Journal of Microbiological Methods, 53(2): 149-155.

https://doi.org/10.1016/S0167-7012(03)00020-4

Cai, T., Jiang, L., Yang, C., & Huang, K. (2006). Application of real-time PCR for quantitative detection of Vibrio parahaemolyticus from seafood in eastern China. Federation of European Microbiological Societies, 46: 180-186.

https://doi.org/10.1111/j.1574-695X.2005.00016.x

Chitov, T., Wongdao, S., Thatum, W., Puprae, T., & Sisuwan, P. (2009). Occurrence of potentially pathogenic Vibrio species in raw, processed, and ready - to - eat seafood and seafood products. Maejo International Journal of Science and Technology, 3(1): 88-98.

Dileep, V., Kumar, H.S., Kumar, Y., Nishibuchi, M., & Karunasagar, I. (2003). Aplication of polymerase chain reaction for detection of Vibrio parahaemolyticus associated with tropical seafoods and coastal environment. Letters in Applied Microbiology, 36: 423-427.

https://doi.org/10.1046/j.1472-765X.2003.01333.x

Dorak, M.T. (2007). Real - time PCR. New York: Taylor & Francis Group.

https://doi.org/10.4324/9780203967317

Elexson, N., Son, R., Rukayadi, Y., Tuan Zainazor, T.C., Ainy, M. Nor., Nakaguchi, Y., & Mitsuaki, N. (2013). Biosafety of Vibrio parahaemolyticus biofilm from seafood using herbs and spices. Journal of Life Medicine, 1(3): 71-82.

https://doi.org/10.14511/jlm.2013.010305

Food and Environmental Hygiene Department, Hong Kong Special Administrative Region Government (2005, August). Vibrio species in seafood. In Risk Assessment Studies Report, No. 20. Retrieved from http://www.cfs.gov.hk/english/programme/programme_rafs/files/vibrios_ra.pdf.

Iwamoto, M., Ayers, T., Mahon, B.E., & Swerdlow, D.L. (2010). Epidemiology of seafood-associated infections in the United States. Clinical Microbiology Reviews, 23(2): 399-411.

https://doi.org/10.1128/CMR.00059-09

Lee, C. & Pan, S. (1993). Rapid and specific detection of the thermostable direct hemolysin gene in Vibrio parahaemolyticus by polymerase chain reaction. Journal of General Microbiology, 139: 3225-3231.

https://doi.org/10.1099/00221287-139-12-3225

Martinon, A., Cronin, U.P., & Wilkinson, M.G. (2011). Comparison of in - house and commercial real - time PCR systems for the detection of Enterobacteriaceae and their evaluation within an interlaboratory study using infant formula samples. Food Analytical Methods, 4: 485-496.

https://doi.org/10.1007/s12161-010-9188-7

Micky, V., Nur Quraitu' Aini, T., Velnetti, L., Patricia Rowena, M.B., Christy, C., & Lesley, M.B. (2014). Development of a SYBR green based real - time polymerase chain reaction assay for specific detection and quantification of Vibrio parahaemolyticus from food and environmental samples. International Food Research Journal, 21: 921-927.

Nelapati, S., Nelapati, K., & Chinnam, B.K. (2012). Vibrio parahaemolyticus - An emerging foodborne pathogen - A Review. Veterinary World, 5: 48-62.

https://doi.org/10.5455/vetworld.2012.48-63

Nishibuchi, M., Ishibashi, M., Takeda, Y., & Kaper, J.B. (1985). Detection of the thermostable direct hemolysin gene and related DNA sequences in Vibrio parahaemolyticus and other Vibrio species by the DNA colony hybridization test. Infection and Immunity, 49: 481-486.

https://doi.org/10.1128/iai.49.3.481-486.1985

Noorlis, A., Ghazali, F.M., Cheah, Y.K., Tuan Zainazor, T.C., Ponniah, J., Tunung, R., Tang, J.Y.H., Nishibuchi, M., Nakaguchi, Y., & Son, R. (2011). Prevalence and quantification of Vibrio species and Vibrio parahaemolyticus in freshwater fish at hypermarket level. International Food Research Journal, 18: 689-695.

Nyholm, S.V. & McFall-Ngai, M.J. (2004). The winnowing: Establishing the squid - Vibrio symbiosis. Nature Reviews Microbiology, 2: 632-642.

https://doi.org/10.1038/nrmicro957

Quiroz-Guzmán, E., Balcázar, J.L., Vázquez- Juárez, R., Cruz-Villacorta, A.A., & Martínez-Díaz, S.F. (2013) Proliferation, colonization, and detrimental effects of Vibrio parahaemolyticus and Vibrio harveyi during brine shrimp hatching. Aquaculture, 406-407: 85-90.

https://doi.org/10.1016/j.aquaculture.2013.03.008

Rakesh, K., Surendran, P.K., & Thampuran, N. (2010). Rapid quantification of Salmonella in seafood using real - time PCR assay. Journal of Microbiology and Biotechnology, 20(3): 569-573.

Rosec, J.P., Simon, M., Causse, V., & Boudjemaa, M. (2009). Detection of total and pathogenic Vibrio parahaemolyticus in shellfish: comparison of PCR protocols using pR72H or toxR targets with a culture method. International Journal of Food Microbiology, 129: 136-145.

https://doi.org/10.1016/j.ijfoodmicro.2008.11.017

Sujeewa, A.K.W., Norrakiah, A.S., & Laina, M. (2009). Prevalence of toxic genes of Vibrio parahaemolyticus in shrimp (Penaus monodon) and culture environment.International Food Research Journal, 16: 89-95.

Theethakaew, C., Feil, E.J., Castillo-Ramírez, S., Aanensen, D.M., Suthienkul, O., Neil, D.M., & Davies, R.L. (2013). Genetic relationships of Vibrio parahaemolyticus isolates from clinical, human carrier, and environmental sources in Thailand, determined by multilocus sequence analysis. Applied and Environmental Microbiology, 79: 2358-2370.

https://doi.org/10.1128/AEM.03067-12

Tian, H., Wu, J., Chen, Y., Zhang, K., Shang, Y., & Liu, X. (2012). Development of a SYBR green real - time PCR method for rapid detection of sheep pox virus. Virology Journal, 9: 291.

https://doi.org/10.1186/1743-422X-9-291

Wang, D., Fang, Z., Xie, C., & Liu, Y. (2013). Construction of method for rapid detection of Vibrio parahaemolyticus using the quantitative real - time PCR based on the ToxR gene. Advance Journal of Food Science and Technology, 5(8): 1022-1030.

https://doi.org/10.19026/ajfst.5.3200

Zhang, X.H. & Austin, B. (2005). Haemolysin in Vibrio species. Journal of Applied and Environmental Microbiology, 98(5): 1011- 1019.

https://doi.org/10.1111/j.1365-2672.2005.02583.x

Zhou, S., Hou, Z., Li, N., & Qin, Q. (2007). Development of a SYBR Green I real - time PCR for quantitative detection of Vibrio alginolyticus in seawater and seafood. Journal of Applied & Environmental Microbiology, 103: 1897-1906.

https://doi.org/10.1111/j.1365-2672.2007.03420.x

Zhu, Z., Fan, H., Qi, X., Qi1, Y., Shi, Z., Wang, H., Cui, L., & Zhou, M. (2013). Development and evaluation of a SYBR Green-Based Real Time RT-PCR assay for detection of the emerging Avian Influenza A (H7N9) virus. PLoS ONE, 8(11): e80028.

https://doi.org/10.1371/journal.pone.0080028

Zulkifli, Y., Alitheen, N.B., Son, R., Yeap, S.K., Lesley, M.B., & Raha, A.R., (2009). Identification of Vibrio parahaemolyticus isolates by PCR targeted to the toxR gene and detection of virulence genes. International Food Research Journal, 16(3): 291-298.

Downloads

How to Cite

Bilung, L. M., Linang, V., Apun, K., Lihan, S., Kqueen, C. Y., & Vincent, M. (2016). Application of Real Time PCR for the Detection and Enumeration of Vibrio parahaemolyticus from Seafood in Sarawak (Malaysia). Borneo Journal of Resource Science and Technology, 5(2), 70–78. https://doi.org/10.33736/bjrst.224.2015

Issue

Section

General