Characterisation of Klebsiella pneumoniae Xylanase and Increment of Its Activity in Heterologous Expression System

  • Mohd Hasnain Hussain
  • Suhaila Zainol
  • Nikson Fatt- Ming Chong
  • Awang Ahmad Sallehin Awang Husaini
Keywords: Heterologous expression, Klebsiella pneumoniae, recombinant xylanase


A xylanase DNA sequence with a total length of 642 bp was previously isolated from a xylanolytic Klebsiella
pneumoniae. Xylanase gene primers were designed with the addition of BamH1 and EcoR1 restriction enzyme
sites in order get a full xylanase gene that is in-frame with pSTAG expression vector. The isolated xylanase
gene was amplified using the designed primers through PCR, then cloned and expressed in E. coli BL21 (DE3).
In-silico characterization showed that the recombinant xylanase has a molecular weight of 23.9 kDa and a pI of
9.32. The signal peptide cleavage site for the recombinant xylanase was predicted to be between residues 61
and 62. The activity of the crude recombinant xylanase was 2.015 U/mL, which was higher than the crude
native xylanase activity, with maximum at 0.642 U/mL. Staining of the birchwood xylan agar plate with Congo
red showed a clearing zone around E. coli BL21 (DE3) colonies with recombinant pSTAG plasmid even
without being induced with IPTG. This implied leaky expression of the E. coli BL21 (DE3) secretion system,
which recognized the signal sequence of the recombinant xylanase, and proceeded to cleave and secreted out
the mature protein into the culture medium. MALDI-TOF analysis of a 20 kDa protein present in the culture
medium confirmed that the recombinant xylanase had been secreted into the culture medium.


Altenbuchner, J. & Mattes, R. (2006). Escherichia coli. In G. Gellissen (Ed.), Production of recombinant proteins: novel microbial and eukaryotic expression systems. Germany: John Wiley & Sons. Pp. 7-35.

Edwards, A., Borthakur, A., Bornemann, S., Venail, J., Denyer, K., Waite, D., Fulton, D., Smith, A. & Martin, C. (1999). Specificity of starch synthase isoforms from potato. European Journal of Biochemistry, 266: 724-736.

Field, S., Udalova, I. & Ragoussis, J. (2007). Accuracy and reproducibility of protein-DNA microarray technology. In H. Seitz (Ed.), Analytics of protein-DNA interactions. New York: Springer. Pp 87-109.

Garcìa-Fruitòs, E., Gonzàlez-Montalbàn, N., Martìnez-Alonso, M., Rinas, U. & Villaverde, A. (2009). Systems-level analysis of protein quality in inclusion body-forming Escherichia coli cells. In S.Y. Lee (Ed.), Systems biology and biotechnology of Escherichia coli. Netherlands: Springer. Pp 295-326.

Gardener, B.B.M. (2004). Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology, 94(11): 1252-1258.

Helianti, I., Nurhayati, N. & Wahyuntari, B. (2008). Cloning, sequencing, and expression of a β-1, 4-endoxylanase gene from Indonesian Bacillus licheniformis strain I5 in Escherichia coli. World Journal of Microbiology and Biotechnology, 24(8): 1273-1279.

Huang, J., Wang, G. & Xiao, L. (2006). Cloning, sequencing and expression of the xylanase gene from a Bacillus subtilis strain B10 in Escherichia coli. BioresourceTechnology, 97(6): 802-808.

Hussain, H., Mant, A., Seale, R., Zeeman, S., Hinchliffe, E., Edwards, A., Hylton, C., Bornemann, S., Smith, A.M., Martin, C. & Bustos, R. (2003). Three isoforms of

isoamylase contribute different catalytic properties for the debranching of potato

glucans. The Plant Cell, 15(1): 133-149.

Hussain, H. & Martin, C. (2009). Comparative analysis of primary and secondary structure for pea isoamylase isoforms predicts different catalytic properties against glucan substrates. Starch/‐Stärke, 61(10): 570-577.

Hussain, M.H., Chong, N.F.M., Chan, C.S.W., Safarina, A. & Husaini, A. (2011). Xylanase gene from a locally isolated bacterium. Malaysian Applied Biology, 40(1): 33-38.

Jalal, A., Rashid, N., Ahmed, N., Iftikhar, S. & Akhtar, M. (2011). Escherichia coli signal

peptidase recognizes and cleaves the signal sequence of xylanase from a newly isolated

Bacillus subtilis strain R5. Biochemistry (Moscow), 76(3): 347-349.

Jalal, A., Rashid, N., Rasool, N. & Akhtar, M. (2009). Gene cloning and characterization

of a xylanase from a newly isolated Bacillus subtilis strain R5. Journal of Bioscience and Bioengineering, 107(4): 360-365.

Jonasson, P., Liljeqvist, S., Nygren, P.A. & Stahl, S. (2002). Genetic design for

facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnology and Applied Biochemistry, 35: 91-105.

Kulkarni, N., Shendye, A. & Rao, M. (1999). Molecular and biotechnological aspects of

xylanases. FEMS Microbiology Reviews,23(4): 411-456.

Lee, C.C., Kibblewhite-Accinelli, R.E., Smith, M.R., Wagschal, K., Orts, W. J. & Wong, D.W. (2008). Cloning of Bacillus licheniformis xylanase gene and characterization of recombinant enzyme. Current Microbiology, 57(4): 301-305.

Nakamura, S., Wakabayashi, K., Nakai, R., Aono, R. & Horikoshi, K. (1993). Purification and some properties of an alkaline xylanase from alkaliphilic Bacillussp. strain 41M-1. Applied and Environmental Microbiology, 59(7): 2311-2316.

Nielsen, H., Engelbrecht, J., Brunak, S. & Heijne, G.V. (1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering, 10(1): 1-6.

Novagen (1999). pET System Manual (8th edition). Accessed online from

Paetzel, M., Karla, A., Strynadka, N.C.J. & Dalbey, R.E. (2002). Signal peptidases. Chemical Reviews, 102: 4549-4579.

Singh, R.P., Dwivedi, P., Vivekanand & Kapur, N. (2007). Xylanases: structure, molecular cloning and regulation of expression. In R.C. Kuhad & A. Singh, (Eds.), Lignocellulose biotechnology: Future prospects. New Delhi: I.K. International Publishing House. Pp 149-

Suvorov, M. (2008). Regulation of cell wall biosynthesis and resistance to antibiotics (Doctoral dissertation). Indiana: University of Notre Dame. ProQuest Database (3318074).

Te'o, V.S.J., Cziferszky, A.E., Bergquist, P.L. & Nevalainen, K.M.H. (2000). Codon optimization of xylanase gene xynB from the thermophilic bacterium Dictyoglomus

thermophilum for expression in the filamentous fungus Trichoderma reesei. FEMS Microbiology Letters, 190(1): 13-19.

Touzel, J.P., O'Donohue, M., Debeire, P., Samain, E. & Breton, C. (2000). Thermobacillus xylanilyticus gen. nov., sp. nov., a new aerobic thermophilic xylandegrading bacterium isolated from farm soil. International Journal of Systematic and Evolutionary Microbiology, 50(1): 315-320.

Wanarska, M., Hilderbrandt, P. & Kur, J. (2007). A freeze-thaw method for disintegration of Escherichia coli cells producing T7 lysozyme used in pBAD expression systems. Acta Biochimica Polonica, 54(3): 671-672.

Yin, E., Le, Y., Pei, J., Shao, W. & Yang, Q. (2008). High-level expression of the xylanase from Thermomyces lanuginosus in Escherichia coli. World Journal of Microbiology and Biotechnology, 24(2): 275-280.

Zhou, L., Zhang, K. & Wanner, B.L. (2004). Chromosomal expression of foreign and native genes from regulatable promoters in Escherichia coli. In P. Balbás & A. Lorence

(Eds.), Recombinant gene expression: reviews and protocols. USA: Humana Press. Pp 132.

How to Cite
Hussain, M. H., Zainol, S., Ming Chong, N. F.-, & Awang Husaini, A. A. S. (2016). Characterisation of Klebsiella pneumoniae Xylanase and Increment of Its Activity in Heterologous Expression System. Borneo Journal of Resource Science and Technology, 6(1), 1-9.