Detection of Cholera Toxin-Producing Vibrio cholerae in Phytoplankton from Santubong and Samariang Estuaries

Authors

  • Lesley Maurice Bilung
  • Mintra Prommani Etriam
  • Ahmad Syatir Tahar
  • Teng Sing Tung
  • Kasing Apun

DOI:

https://doi.org/10.33736/bjrst.1584.2019

Abstract

Many cholera outbreaks worldwide were associated with cholera toxin-producing Vibrio cholerae. The bacteria are ubiquitous in aquatic environment, whilst phytoplankton is associated with adaptation of the Vibrio species. This study was conducted to detect cholera toxin-producing Vibrio cholerae, and to determine association of the selected water physicochemical parameters with the number of the bacteria. In this study, a total of ten phytoplankton samples were collected at Santubong and Samariang Estuaries in Kuching, Sarawak. Water physicochemical parameters (temperature, pH and salinity) were recorded. Vibrio bacteria were cultivated on thiosulfate citrate bile-salts sucrose selective agar and analysed for cholera toxin-producing Vibrio cholerae using polymerase chain reaction by targeting ctxA gene that encodes for virulence cholera enterotoxin subunit A. The result revealed that a range of 1.0 × 107 – 8.0 × 107 CFU/ml of yellow colonies growing on the thiosulfate citrate bile-salts sucrose agars. Inversely, no samples were positive with cholera toxin-producing Vibrio cholerae. The physicochemical parameters at Samariang Estuary were more associated with the number of bacteria in the samples compared to Santubong Estuary.

References

Alam, M.J., Miyoshi, S.I. & Shinoda, S. (2003). Studies on pathogenic Vibrio parahaemolyticus during warm weather season in the Seto Inland Sea, Japan. Environmental Microbiology, 5: 706-710.

https://doi.org/10.1046/j.1462-2920.2003.00458.x

Benjamin, P.G., Gunsalam, J.W., Radu, S., Napis, S., Bakar, F.A., Beon, M., Benjamin, A., Dumba, C.W., Sengol, S., Mansur, F., Jeffrey, R., Nakaguchi, Y. & Nishibuchi M. (2005). Factors associated with emergence and spread of cholera epidemics and its control in Sarawak, Malaysia between 1994 and 2003. Japanese Journal of Southeast Asian Studies, 43(2): 109-140.

Bilung, L.M., Radu, S., Bahaman, A.R., Rahim, R.A., Napis, S., Wong, M.C.V.L., Tanil, G.B. & Nishibuchi, M. (2005). Detection of Vibrio parahaemolyticus in cockle (Anadara granosa) by PCR. FEMS Microbiology Letters, 252(1): 85-88.

https://doi.org/10.1016/j.femsle.2005.08.053

Broeck, D.V., Horvath, C. & De Wolf, M.J. (2007). Vibrio cholerae: cholera toxin. The International Journal of Biochemistry & Cell Biology, 39(10): 1771-1775.

https://doi.org/10.1016/j.biocel.2007.07.005

Cavallo, R.A. & Stabili, L. (2002). Presence of vibrios in seawater and Mytilus gallaprovincialis (Lam.) from Mar Piccolo of Taranto (Ionian Sea). Water Research, 36 (15): 3719-3726.

https://doi.org/10.1016/S0043-1354(02)00107-0

Dutta, D., Chowdhury, G., Pazhani, G.P., Guin, S., Dutta, S., Ghosh, S., Rajendran, K., Nandy, R.K., Mukhopadhyay, A.K., Bhattacharya, M.K., Mitra, U., Takeda, Y., Nair, G.B. & Ramamurthy, T. (2013). Vibrio cholerae non-O1, non-O139 serogroups and cholera-like diarrhea, Kolkata, India. Emerging Infectious Diseases, 19(3): 464.

https://doi.org/10.3201/eid1903.121156

Faruque, S.M. & Mekalanos, J.J. (2012). Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence, 3(7): 556-565.

https://doi.org/10.4161/viru.22351

Huq, A., Haley, B.J., Taviani, E., Chen, A., Hasan, N.A., & Colwell, R.R. (2012). Detection, isolation, and identification of Vibrio cholerae from the environment. Current Protocols in Microbiology, 26(1): 6A-5.

https://doi.org/10.1002/9780471729259.mc06a05s26

Janda, J.M., Powers, C., Bryant, R.G., & Abbott, S.L. (1988). Perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp. American Society for Microbiology, 1(3): 245-267.

https://doi.org/10.1128/CMR.1.3.245-267.1988

Jiang, S., Chu, W. & Fu, W. (2003). Prevalence of cholera toxin genes (ctxA and zot) among non-O1/O139 Vibrio cholerae strains from Newport Bay, California. Applied and Environmental Microbiology, 69(12): 7541-7544.

https://doi.org/10.1128/AEM.69.12.7541-7544.2003

Lipp, E.K., Rivera, I.N., Gil, A.I., Espeland, E.M., Choopun, N., Louis, V.R., Russek-Cohen, E., Huq A. & Colwell, R.R. (2003). Direct detection of Vibrio cholerae and ctxA in Peruvian coastal water and plankton by PCR. Applied and Environmental Microbiology, 69(6): 3676-3680.

https://doi.org/10.1128/AEM.69.6.3676-3680.2003

Lutz, C., Erken, M., Noorian, P., Sun, S. & McDougald, D. (2013). Environmental reservoirs and mechanisms of persistence of Vibrio cholerae. Frontiers in Microbiology, 4: 375.

https://doi.org/10.3389/fmicb.2013.00375

Nandi, B., Nandy, R.K., Mukhopadhyay, S., Nair, G.B., Shimada, T. & Ghose, A.C. (2000). Rapid method for species-specific identification of Vibrio cholerae using primers targeted to the gene of outer membrane protein OmpW. Journal of Clinical Microbiology, 38(11):4145-4151.

https://doi.org/10.1128/JCM.38.11.4145-4151.2000

Neogi, S.B., Islam, M.S., Nair, G.B., Yamasaki, S. & Lara, R.J. (2012). Occurrence and distribution of plankton-associated and free-living toxigenic Vibrio cholerae in a tropical estuary of a cholera endemic zone. Wetlands Ecology and Management, 20(3): 271-285.

https://doi.org/10.1007/s11273-012-9247-5

Norazah, A., Zainuldin, M.T., Kamel, A.G., Kamaliah, M.N. & Taha, A.M. (2001). Detection of Vibrio cholerae 01 from aquatic environment in Sarawak. The Medical Journal of Malaysia, 56(1): 4-9.

Peterson, O., Asplund, M., Karunasagar, I., & Godhe, A. (2010). Phytoplankton community composition and diversity effects on the growth of marine Vibrio bacteria. In Pagou, P., & Hallengraeff, G. (Eds.), International society for the study of harmful algae and intergovernmental oceanographic commission of UNESCO 2013: Proceedings of the 14th International Conference on Harmful Algae (pp 147-149). Crete: Hersonissos.

Radu, S., Vincent, M., Apun, K., Rahim, R.A., Benjamin, P.G. & Rusul, G. (2002). Molecular characterization of Vibrio cholerae O1 outbreak strains in Miri, Sarawak (Malaysia). Acta Tropica, 83(2): 169-176.

https://doi.org/10.1016/S0001-706X(02)00110-9

Reidl, J. & Klose, K.E. (2002). Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiology Reviews, 26(2): 125-139.

https://doi.org/10.1111/j.1574-6976.2002.tb00605.x

Sharma, A. & Chaturvedi, A.N. (2006). Prevalence of virulence genes (ctxA, stn, OmpW and tcpA) among non-O1 Vibrio cholerae isolated from fresh water environment. International Journal of Hygiene and Environmental Health, 209(6): 521-526.

https://doi.org/10.1016/j.ijheh.2006.06.005

Smith, A.C. & Hussey, M.A. (2005). Gram staining protocols. American Society for Microbiology. http://www.asmscience.org/content/education/protocol/protocol.2886. Downloaded on 3 May 2019.

Tuney, I. & Maroulakis, M. (2014). Phytoplankton sampling methods. Crete, Greece: Environmental Protection Management & Economics (ENVECO S.A.).

U.S Food & Drug, USFDA (2004). Bacteriological Analytical Manual Chapter 9 Vibrio. https://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm070830.htm. Downloaded 2 February 2019.

Vincent, M., Lai, L.S., Ng, L.T. & Apun, K. (2014). Application of PCR-based DNA fingerprinting techniques for the genetic differentiation of Vibrio cholerae Non-01/Non 0139 isolates form Kuching, Sarawak. Borneo Journal of Resource Science and Technology, 4(2): 21-34.

https://doi.org/10.33736/bjrst.233.2014

Downloads

Published

2019-06-30

How to Cite

Maurice Bilung, L. ., Etriam, M. P., Tahar, A. S. ., Tung, T. S., & Apun, K. (2019). Detection of Cholera Toxin-Producing Vibrio cholerae in Phytoplankton from Santubong and Samariang Estuaries. Borneo Journal of Resource Science and Technology, 9(1), 36–43. https://doi.org/10.33736/bjrst.1584.2019