Antibacterial Activity of the Epidermal Mucus of Barbodes everetti

Authors

  • JIAZHEN LIM
  • YANG LEE
  • BADIOZAMAN SULAIMAN
  • LESLEY MAURICE BILUNG
  • YEE LING CHONG

DOI:

https://doi.org/10.33736/tur.1239.2018

Abstract

The epidermal mucus of fish contains antimicrobial agents that act as biological defence against disease. This study aims to identify antibacterial activity and protein concentration of epidermal mucus of Barbodes everetti, a Bornean endemic freshwater fish. The epidermal mucus was extracted with 3% acetic acid, 0.85% sodium chloride and crude solvents. The mucus activity against eight strains of human pathogenic bacteria, including Bacillus cereus ATCC 33019, Escherichia coli O157:H7, Listeria monocytogenes ATCC 7644, Pseudomonas aeruginosa ATCC 27853, Salmonella braenderup ATCC BAA 664, Salmonella typhimurium, Staphylococcus aureus ATCC 25933, and Vibrio cholerae, were tested. The acetic acid mucus extract of B. everetti was able to inhibit five strains of bacteria and show no activity toward E. coli O157:H7, B. cereus ATCC 33019 and L. monocytogenes ATCC 7644. Moreover, the highest protein concentration was quantified in crude extract, followed by aqueous and acetic acid extracts. This study provides a preliminary knowledge on the activity of epidermal mucus of B. everetti towards five out of the eight human pathogens tested, therefore it may contain potential sources of novel antibacterial components which could be further extracted for the production of natural antibiotics towards human-related pathogenic bacteria.

Keywords: Antibacterial, antimicrobial properties, Barbodes everetti, epidermal mucus, pathogenic bacteria

References

Bernstein, R. M., Schluter, S. F., & Marcholonis, J. J. (1997). Immunity. In D. H. Evans (Eds.), The physiology of fishes (2nd ed.) (pp. 215-242). Boca Raton, Florida: CRC Press.

Bragadeeswaran, S., Priyadharshini, S., Prabhu, K., & Rani, S. R. S. (2011). Antimicrobial and hemolytic activity of fish epidermal mucus Cynoglossus and Arius caelatus. Asian Pacific Journal of Tropical Medicine, 305-309.

https://doi.org/10.1016/S1995-7645(11)60091-6

Caprette, D. R. (2015). Bradford protein assay. Retrieved April 26, 2018, from http://www.ruf.rice.edu/~bioslabs/methods/protein/bradford.htmL.

Cole, A. M., Weis, P., & Diamond, G. (1997). Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. The Journal of Biological Chemistry, 272(18), 12008-12012.

https://doi.org/10.1074/jbc.272.18.12008

Cole, A. M., & Ganz, T. (2000). Human antimicrobial peptides: Analysis and application. Biotechniques, 29(4), 822-831.

https://doi.org/10.2144/00294rv01

Dhanaraj, M., Haniffa, M. A., Singh, A. S. V., Ramakrishnan, M., Manikandaraja, D., & Milton, J. M. (2009). Antibacterial activity of skin and intestinal mucus of five different freshwater fish species viz., Channa striatus, C. micropeltes, C. marulius, C. punctatus and C. gachua. Malaysian Journal of Science, 28(3), 257-262.

https://doi.org/10.22452/mjs.vol28no3.3

Esteban, M. Á. (2012). An overview of the immunological defences in fish skin. International Scholarly Research Notices Immunology, 2012(853470), 1-29.

https://doi.org/10.5402/2012/853470

Fast, M. D., Sims, D. E., Burka, J. F., Mustafa, A., & Ross, N. W. (2002). Skin morphology and humoral non-specific defence parameter of mucus and plasma in rainbow trout, coho and Atlantic salmon. Comparative Biochemistry and Physiology, Part A, 132, 645-657.

https://doi.org/10.1016/S1095-6433(02)00109-5

Hellio. C., Pons, A. M., Beaupoil, C., Bourgougnon, N., & Gal, Y. L. (2002). Antibacterial, antifungal and cytotoxic activities of extracts from fish epidermis and epidermal mucus. International Journal of Antimicrobial Agents, 20, 214-219.

https://doi.org/10.1016/S0924-8579(02)00172-3

Hisar, O., Hisar, S. A., Uyanik, M. H., Sahin, T., Cakir, F., & Yilmaz, S. (2014). In vitro antimicrobial and antifungal activities of aqueous skin mucus from rainbow trout (Oncorhynchus mykiss) on human pathogens. Marine Science and Technology Bulletin, 3(1), 19-22.

Kottelat, M., Whitten, A. J., Kartikasari, S. N., & Wirjoatmodjo, S. (1993). Freshwater fishes of Western Indonesia and Sulawesi. Hong Kong: Periplus Editions.

Kumari, U., Nigam, A. K., Mittal, S., & Mittal, A. K. (2011). Antibacterial properties of the skin mucus of the freshwater fishes, Rita rita and Channa punctatus. European Review for Medical and Pharmacological Science, 2011(15), 781-786.

Kuppulakshmi, C., Prakash, M., Gunasekaran, G., Manimegalai, G., & Sarojini, S. (2008). Antibacterial properties of fish mucus from Channa punctatus and Cirrhinus mrigala. European Review for Medical and Pharmacological Sciences, 12, 149-153.

Lee, A., Cheng, K. C., & Liu, J. R. (2017). Isolation and characterization of a Bacillus amyloliquefaciens stain with zearalenone removal ability and its probiotic potential. PloS one, 12(8), 1-21.

https://doi.org/10.1371/journal.pone.0182220

Masso-Silva, J. A., & Diamond, G. (2014). Antimicrobial peptides from fish. Pharmaceuticals, 7, 265-210.

https://doi.org/10.3390/ph7030265

Momoh, M. A., Mora, A. T., Ogbonna, J. D. N., & Agboke, A. A. (2014). In vitro evaluation of antimicrobial activity of cat fish slime mucin on selected micro-organism by agar diffusion method. Pakistan Journal of Zoology, 46(6), 1747-1751.

Nigam, A. K., Kumari, U., Mittal, S., & Mittal, A. K. (2012). Comparative analysis of innate immune parameters of the skin mucous secretions from certain freshwater teleosts, inhabiting different ecological niches. Fish Physiology and Biochemistry 38, 1245-1256.

https://doi.org/10.1007/s10695-012-9613-5

Nigam, A. K., Kumari, U., Mittal, S., & Mittal, A. K. (2017). Evaluation of antibacterial activity and innate immune components in skin mucus of Indian major carp, Cirrhinus mrigala. Aquaculture Research, 48(2), 407-418.

https://doi.org/10.1111/are.12889

Ong, Y. W., Xavier, R., & Marimuthu, K. (2010). Screening of antibacterial activity of mucus extract of snakehead fish, Channa striatus (Bloch). European Review for Medical and Pharmacological Sciences, 14, 675-681.

Palaksha, K. J., Shin, G. W., Kim, Y. R., & Jung, T. S. (2008). Evaluation of non-specific immune components from the skin mucus of olive flounder (Paralichthys olivaceus). Fish and Shellfish Immunology, 24, 479-488.

https://doi.org/10.1016/j.fsi.2008.01.005

Pennington, H. (2010). Escherichia coli O157. Lancet, 376, 1428-1435.

https://doi.org/10.1016/S0140-6736(10)60963-4

Ramesh, B. (2013). Assessment of antimicrobial peptides from mucus of fish. International Journal of Current Biotechnology, 1(1), 5-8.

Rao, V., Marimuthu, K., Kupusamy, T., Rathinam, X., Arasu, M. V., Al-Dhabi, N. A., & Arockiaraj, J. (2015). Defence properties in the epidermal mucus if different freshwater fish species. Aquaculture, Aquarium, Conservation & Legislation International Journal of Bioflux Society, 8(2), 184-194.

Subramanian, S., MacKinnon, S., & Ross, N. W. (2007). A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comparative Biochemistry and Physiology, Part B, 148, 256-263.

https://doi.org/10.1016/j.cbpb.2007.06.003

Subramanian, S., Ross, N. W., & MacKinnon, S. L. (2008). Comparison of antimicrobial activity in the epidermal mucus extracts of fish. Camparative Biochemistry and Physiology, Part B, 150, 85-92.

https://doi.org/10.1016/j.cbpb.2008.01.011

Vennila, R., Kumar, K. R., Kanchana, S., Arumugam, M., Vijayalakshmi, S., & Balasubramaniam, T. (2011). Preliminary investigation on antimicrobial and proteolytic property of the epidermal mucus secretion of marine stingrays. Asian Pacific Journal of Tropical Biomedicine, 1(2), S239-S243.

https://doi.org/10.1016/S2221-1691(11)60162-7

Zaccone, G., Meseguer, J., García-Ayala, A., & Kapoor, B. G. (2009). Fish defences volume I: Immunology. New Hampshire, USA: Science Publishers.

https://doi.org/10.1201/b10188

Downloads

Published

2018-12-10

How to Cite

LIM, J., LEE, Y., SULAIMAN, B., BILUNG, L. M., & CHONG, Y. L. (2018). Antibacterial Activity of the Epidermal Mucus of Barbodes everetti. Trends in Undergraduate Research, 1(1), a40–44. https://doi.org/10.33736/tur.1239.2018

Issue

Section

Resource Science and Technology