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Abstract - This paper aims at developing techniques for design and
implementation of neural classifiers. Based on our previous study on
generalized RBF neural network architecture and learning criterion
function for parameter optimization, this work addresses two realization
issues, i.e., supervised input features selection and genetic computation
techniques for tuning classifiers. A comparative study on classification
performance is carried on by a set of protein sequence data.
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1. INTRODUCTION

Classification involves the assignment of an unlabelled pattern to a known
class or group in a particular problem domain. Type of classifiers includes
decision tree classificrs (Quilan, 1994), fuzzy classifiers (Nauck & Kruse, 1995),
k-Nearest Neighborhood (Fukunaga; 1990), and neural classifiers (Rumelhart
et al., 1986). Each classifier has its own strengths and weaknesses and its
performance is problem dependent. For example, the decision tree is not suitable
for noisy data whereas neural networks are more tolerant to noise. There are a
number of criteria for evaluating a classifier’s performance, such as the overall
coverage rate and the overall misclassification rate.

Neural networks have demonstrated great potentials in resolving complex
engineering problems including intelligent control and estimation, signal
separation and filtcring, time-series prediction, pattern recognition and
classification. Multiplayer perceptron (MLP) or BP neural net (Rumelhart et al.,
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1986) is the most popular neural network architecture due to its universal
approximation power and well developed error back propagation learning
algorithm (Hornik ef al., 1989). Despite being widely used, the MLP network has
its own limitations. The number of hidden units and the number of layers for
MLP network are determined in a subjective manner which requires a great
number of tests. It is also considerably difficult to include prior knowledge into
the network architecture even though attempts have been explored. The standard
MLP network has numerous parameters (i.e. connection weights) to be updated
during training, which results in a large training time and also leads to a local
minima.

An alternative to MLP network is the Radial Basis Function (RBF) network.
The RBF network is becoming more popular in recent years. The increasing
popularity of this network architecture is mainly due to its explanatory
architecture, universal approximation property, hybrid learning strategy and
functional equivalence to a fuzzy inference system (Jang ez al., 1993). The main
concern in utilizing the RBF networks is to determine the right number of hidden
units and their associated parameters. Methods proposed for tackling this issue,
includes using a subset of training data (Kubat & Cooperson, 1999), clustering
(Jain et al., 1999), mixture models and orthogonal least squares. MLLP and RBF
neural networks can achieve comparable results although RBF networks have
better generalization capability in its general sense.

Training neural classifiers requires a criterion function or objective function
to update the connection weights. The well-known Mean Squared Error (MSE)
criterion function is the most commonly used. This criterion function calculates
the errors between the desired outputs and actual model outputs and uses them
for updating the network weights. Although a probabilistic interpretation exists
for this learning criterion, it cannot ensure consistencies between learning
criterion and classification criterion. Therefore, the MSE is more suitable for
modeling tasks rather than classification problems. This is because neural
classification system requires the desired outputs to be represented artificially,
e.g. by using the 1-of-p coding. There is also no mathematical evidence to prove
that this coding is optimal.

The motivation of the Generalized RBF (GRBF) neural network architecture
is to improve the interpretability of the architecture and to overcome some of the
limitations of the standard RBF network. This paper extends the earlier works in
(Wang et al., 2002(a); Wang & Dillon, 2001) with some improvements and
modifications. A modified algorithm on feature subset selection is used to reduce
the number of input dimensions in the hidden units. The previously proposed
learning criterion for training the GRBF network is fixed, and a genetic algorithm
is applied to implement the optimization of the new objective function. The rest
of the paper is organized as follows: Section 2 reviews related works. Section 3
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describes the GRBF model, Section 4 gives the GRBF objective function,
Section 5 details the implementation issues, Section 6 reports our experimental
results and the last section concludes this paper.

2. RELATED WORK

Data driven initialization is commonly used to determine the number of hidden
units, its cluster center and shapes of RBF network. The covariance matrix of a
cluster determines the cluster shape (could be a sphere, or ellipsoid*) and
orientation. Clusters centers could be determined by using clustering techniques
such as k-means (Jain er al., 1999), fuzzy-clustering (Gustafson & Kessel, 1979),
expectation-maximization (Mak & Kung, 2000), or agglomerate (Aggarwal et.al,
1999). Thus, the work reported in (Hwang & Bang, 1997; Gustafson & Kessel,
1979; Mak & Kung, 2000) is directly applicable to our work. These papers
propose a generalized fuzzy classifier initialized by the data. Similar to Looney
(Looney, 2002), each output node is connected only to hidden units resulting
from the data in the same class. Unlike (Looney, 2002), our work uses the RBF
network instead of the Probabilistic neural network.

The EM clustering techniques (Jain er al., 1999; Mak & Kung, 2000)
produce a Gaussian mixture model that can be used to initialize the GRBF
network. A supervised version of the EM clustering algorithm can be used on the
training data from the same class. In this way, each class will be partitioned into
particular subclasses with each subclass responsible for generating the part of the
examples in the same class (Duda & Hart, 1973). The works reported in (Setnes
& Roubus, 2000) using genetic algorithm is related to our work in the ways the
GRBF network parameters are encoded.

3. GRBF DESIGN

The GRBF architecture and learning strategy was initially proposed in (Wang
et al., 2002(a)), where the fuzzy plus operator was employed as an activation
function in the output layer and various inputs is adopted for each hidden units.
The purpose of this was to reduce the number of connection weights for
enhancing the model’s generalization capability. For completeness, we first
present GRBF model based on our previous works in the following subsection
3.1 and 3.2. In subsection 3.3, we present a modified feature selection technique,
{rom an implementation viewpoint.

* Other cluster shapes are not considered in this paper.
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3.1 GRBF Model

Let p be a set of the target class. Let each class i in p be associated with a set of
cluster Cjj (d X 1) in d-dimensional space, where Cjj is the j-th cluster of class i.
This set of clusters can be obtained through the supervised clustering techniques.
Let M be r X r dimensional matrix, M' be the transpose of the matrix M, and
M be the inverse of the matrix M. The Mahalanobis distance D between an
input vector x and the cluster centre C is defined by,

D(x,C)=(x-CO)Z"(x-C) (n

where Y. is the positive definitive covariance matrix with diagonal elements. This
matrix defines the data points with cluster shapes information. Let (,:ﬁ be the sub-
space of Cjj subjected to constraint dim C, > 2, where dim(v) represents the
dimension of the vector v. The confidence factor (CF) of an input pattern x to a
cluster Cij measures the probability that this input lies within this cluster, that is,
the conditional probability of p(Cijlx). The CF can be measured in terms of the
distance between x and the cluster centre of Cy. The CF value 9y is defined by,
¢, =cxp(-D(x C,)) 2)

Equation 2 defines a kernel activation function of the hidden units in the GRBF
network. This function has the property f{x)—0 as Ix] — +eo. The covariance
matrix only retains the elements corresponding to the feature selected in a cluster.
Because the existence of disjunctive clusters, it is necessary to define an
aggregation operator that aggregates the memberships of a data point to a class.
Let CIi (xn) be the confidence indicator for the input pattern x with respect to the
i-th class. The aggregation operator is defined by the fuzzy algebraic sum (Wang
et.al, 2002(a)), that is,

CL,G)=a®b=a+b-ab 3)

where a and b are the confidence factors. The plus operator @ achieves a partial
membership or overlapping concept by favoring a stronger membership to a
class. For a set of confidence factors, the confidence indicator can be expressed
as in (Wang et al., 2002(a)),
N,
i k+1
CL, (0= 2 (-1 X ey e 4
' k=l( W<dy
where Ni is the number of clusters in class i. Equation (4) can be calculated by

the recursive scheme proposed in (Wedding & Cios, 1998).
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3.2 Architecture

Figure 1 depicts the architecture described by the model in the previous section.
The “S” symbols at the output nodes represents the operator operation. Unlike the
standard RBF network, the input layer and the hidden layer are not fully
connected. The hidden units from class i are only connected to the output unit in
the same class with a connection weight 1 (i.e. wij = 1). The connection weight
values may take values in the range (0, 1), however, unit weights or equal weights
will simplify the neural classifier design. The hidden unit activations represent the
confidence factor. The activations belonging to the same class are applied with the
operator operation at the output nodes to find the confidence indicator value.

Input layer hidden layer decision layer

P11

CIl

CI2

@23

Figure 1: GRBF neunral network architecture

To realize the GRBF network architecture, the number of hidden units is first
determined. This is followed by reducing the number of connections between the
input and the hidden layers. The Expectation Maximization (EM) clustering
algorithm (Jain ef al., 1999) is used to establish the number of hidden units for
each class. EM clustering algorithm estimates a class probability density by
using a mixture of components, each with a covariance matrix that contains the
cluster shape information (LeCun ez al., 1995). Each class can be modeled with
one mixture model separately (i.e. supervised) (Mak & Kung, 2000; Duda &
Hart, 1973). Reducing the full covariance obtained from the EM algorithm to the
diagonal one in Equation 1 will greatly simplify the computational process, but
this may result in the loss of cluster information.
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3.3 Feature Subset Selection

After setting up the right number of hidden units, the number of features in each
hidden unit is reduced using a features subset selection algorithm. Feature
selection method picks a subset of features that are strongly relevant to the target
concept. The aim of feature selection is to choose a subset of features for
improving the generalization capability and decrcasing the computational
complexily without significantly reducing prediction accuracy of the classifier.
Because the hidden units for each class were determined separately, (heir
boundaries may overlap. Feature selection reduces these overlaps to maximize
the membership value for each data point to its class.

The objective of subspace feature selection is to select the feature subset in
a cluster whereby the data points assigned are more similar to each other, in order
to minimize the overlapping with other clusters. The minimization must be
viewed from the global perspective. The PROCLUS (Projected Clustering)
(Aggarwal et al., 1999) subspace feature selection approach was adopted with
modification. The modified algorithm is called FSUBS (i.e. Feature Subset
Selection). In general, the FSUBS algorithm constructs a partition of the points
into clusters with the data points within each cluster close to one another. The
FSUBS algorithm is now described in Figure 2:

Procedure FSUBS(k, C;, D)

{k is total number of clusters}

{Ci: cluster centers for 1 <i <k}

{D:: set of features for C;}

{Li: set of points assigned 10 cluster i}
CurrentBestObjective = <o

BestObjective = CurrentBestObjective
Li=AsslgnPoints(k, C, D; T) {T is the training data}
CurrentBestObjective = FindDimensions(C;,D; L k,T)
While (CurrentBestObjective < BestObjective)
save D;for 1 Sisk
end
Procedure FindDimensians(C;, D;, Lik,T)
{ {Si is the tota! number of features for cluster C;}
{Xy is the average distance from the points in L; to the cluster center C,
along feature j}
Objectivevalue = EvaluateObjective(C;, D;, T)
for each cluster C; do

s,
X,
y =4t

s
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(X, -1)

= 4|2
"IN s
for each feature jdo Z, ; =(Xy —)’;)/7,
Sort Z;; in ascending order
Remove fmture Z..'_s from D;
ReducedObjective =’Evzluate0biective(C;,Di,T)
if (ReducedObjective > Objectivevalue)
Restore feature Z;_" into Dy {don’t remove this attribute}
else

Remove feature Z;J permanently
Objectivevalue = ReducedObjective  {best objective so far}
end if
end for
return Objectivevalue and (D,_Dy)
}

Procedure AssignPoints(k, C;, D; T)
{ foreachxeT
for each C;
di= calculate distance(x, C;, D))
end of

zs:e,igxxxto G, where j= min{d,} foralli

end far

}
Procedure EvaluateQbjective(C;, D,,T)

correcrc’a:sl_’fj' =0
foreachxeT
calculate confidence indicator CI for 1<j<p

c=argmax{Cl }
7

if ¢ = class(x) then

Figure 2: FSUBS algorithm

The FSUBS main module in Figure 2 iteratively improves the performance
of the whole training data set and stops when the performance decreases. The
main loop in the FSUBS module calls the FindDimensions module to reduce the
clusters’ features. Before the FindDimensions module is called, the AssignPoints

module assigns each training data to the nearest cluster.
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The FindDimensions module finds a feature in each hidden units or cluster
that is furthest from its center. This feature is removed and the new performance
is indicated by using the EvaluateQObjective module. This indicator 1s compared
with the best performance so far to derive the best performance measure. The
performance function (i.e. EvaluateObjective) determines the classification rate
(CR) of the training data. The CR of the training data is calculated after each
removal of a feature from a cluster. If the training data is too large, a subset of
the data is used for this purpose. Using the CR as the objective function is
sunitable because this criterion is global.

The FSUBS algorithm differs from the PROCLUS feature selection in two
aspects. In PROCLUS, the evaluation on the objective function is performed
after feature subsets are selected for all the clusters. In FSUBS however, the
evaluation is done immediately after a feature is removed from a cluster. The sole
aim of finding subspace features using PROCLUS is to increase the similarity
distance between points assigned to a cluster. Besides achieving this FSUBS
further reduces the overlap between clusters from different classes.

4. MODEL OPTIMIZATIONS

The initial model is not optimal even after the feature subset selection has been
performed. The GRBF model constructed so far is based on the data belonging
to a single class, but the GRBF classifier needs to be optimized to handle data
from all classes. Further optimization is necessary to reduce overlap between
clusters and to optimize its boundaries. Due to the aggregation operator applied
at the output nodes, the CI value at one output node is incrcased when all the
hidden nodes connected to it have a high activation level. Thus, the optimization
process is responsible to increase the activation level of the hidden units when the
examples from the same class are presented.

The objectives of a classifier are to minimize misclassification (MR) and
increase classification rate (CR). The CR and MR are defined (Wang et al.,
2002(a)) as follows:

ClI'(x)= i CI,(%) 8]
o/}
CR!’ (x)= CI: g; sxec, )

MR, x)=1- CR‘, (x);xec, ()]
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The overall objective for class p is expressed by,

.o 1
Objective, = E |:]le’ (x)+ ax, (x)] )

Equation 6 and 7 can be weakly interpreted as model predictions in terms of
posterior probabilities. The normalized CRp in Equation 6 ensures the MR and
the CR values in the cost function are summed to 1. Equation 7 on the other hand,
corresponds to the “other class” in a two-class classification problem. The
overall results are to maximize the probability of examples assigned to the
correct class (i.e. Equation 6) and minimize the probability of it being assigned
to the wrong class (i.e. Equation 7). Equation 8 is a weaker notion if compared
to the Bayesian is posterior probabilities as no formal proof is defined. However,
the outputs of the GRBF network are equivalent to the neuro-fuzzy classifiers,
which are widely used to predict the extent of membership of a test data to a class
(Wang et al., 2002(a); Wang et al., 2002(b)). We propose to indirectly express the
generalization power of the GRBF classifier using the trace of the covariance
matrix, that is,

L}
GP, =2Tmce(2',) | ©
where np is the number of clusters for class p and n is the total number of training
data. The overall objective function with equal weights for optimizing the GRBF
classifier is given by

L 1
Objective, = Z[Mkp(th sxec, (10)
xec, Yl [

P
Objective = )" Objective, an
i=1
To make the objective function a stronger indicator, the misclassification rate for

training dataset MR is embedded into the objective function. This term is
defined by,

ey 1 " ~
MR (x)=n—Zc,,(x)¢c,‘(x) (12)
k=1
A
where C is the predicted class. The modified objective function is defined as
follows:

Objective = [2 Objective, ] x MR™ (13)
J=t
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The optimization minimizes the objective function in Equation 13
accordingly.

The generic algorithm (GA) is a powerful computationed technique that
emulates biological evolutionary theories to solve derivative-free optimization
problems. A GA comprises of a set of individual elements (the population) and a
set of biologically inspired operators defined over the population itself,
According to the evolution theories, as stronger clements are evolved to the next
generation weaker ones will disappear. The genomes encode possible solutions
of the problem to be optimized. These genomes can be real coded or bit-string
coded. The former is more efficient and computationally less expensive because
transformation from a real number to a bit string and vice versa is a rather
expensive operation. Furthermore, a large memory space is required for the bit
string genome. A GA computation system for dealing with a specific task needs
to contain the following five components (Michalewicz, 1996):

a) a genetic representation for the potential solutions to the problem;
b) away to create an initial population of the potential solutions;

¢) an evaluation function that plays the role of the environment, rating
solutions in terms of their fitness;

-d) genetic operators that alter the composition of children, and

e) values for various parameters that the genetic algorithm uses
(population size, probabilities of applying genetic operators etc.).

This paper adopted the GA representation techniques used in (Setnes &
Roubus, 2000). There are only two terms in the GRBF neural classifier adjusted
in order to improve the classification performance. These two terms are the
cluster centres Ci and the clusters shape information Ai. These terms are encoded
into the genomes and represented as follows:
g=[R1, Rz, ..., Ri]
where Ri is the i-th hidden unit parameters and 7 is the total number of hidden

r

units from all classes. The total length of a genome is Z_Zldim(ci). In real
I=

coded genomes, each single gene is stored as the real number data type in a

programming language. The initial solution after the feature subset selection is
encoded into a single genome. The initial population is established with a random

O B N e PN e -

= o 1
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variation from this initial genome. Each Ri contains the following information,
2 2 2
R = (€,C1nC (0!} (02)" se(0))

where C/ is the j-th element of C, and 7 is the variance.

5. PERFORMANCE EVALUATION

In this section, we evaluate the GRBF network classifier’s performance using a
set of protein sequence data. A protein sequence will be identified to a predefined
superfamily (i.e. class) by using the neural classifier. The superfamilies are
usually formed by sequence alignment algorithm such as BLAST or FASTA
(Mount, 2001). In this study, ten protein superfamilies were obtained from the
PIR (Wu et al., 2002) protein databases. These superfamilies are Cytochrome c,
Cytochrome ¢6, Cytochrome b, Cytochrome b5, Triose-phosphate isomerase,
Plastocyanin, Photosystem II D2 protein, Ferredoxin, Globin, and
Cytochrome b6-f complex 4.2K. A total of 949 protein sequences data were
used for training/validation and 533 for testing. The global features
(n-grams) (Wang ef al., 2002(b))of the protein sequences were extracted. They
are a total of 56 continuous features for each protein sequence comprising of e2
and al. A comparative study is carried out and promising results were obtained.

After extracting the protein features, the number of hidden units for each
class is determined using the EM clustering algorithm. Figure 3 shows the
number of clusters for each class. The number of features used in each hidden
unit is reduced by the FSUBS algorithm described in subsection 3.3.

Class Number of clusters
1 7
2 2
3 6
4 4
5 4
6 2
7 2
8 4
9 16
10 1
Total 48

Figure 3: Number of clusters for each class
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Figure 4: FSUBS training progress

Figure 4 shows the FSUBS algorithm feature reduction on the classifier
performance in terms of the classification rate. After applying the feature subset
selection, an average of 43 features were selected. This is a reduction of about
23.21% on the number of features in each hidden units. We observed that there
are less features selected for classes with less training data.

The genetic algorithm is then applied to further optimize the weights of the
GRBF network. In this experiment, a population size of 30 is setup with
maximum generation of 1000. The training parameters are crossover probability
0.90, mutation probability 0.01, and replacement percentages 0.85. The steady
state (Wall, 1996) GA algorithm was adopted for the training where a new
generation will replace the old generation population set by the replacement
percentages. The selection for replacement is based on the fitness measure of the
individuals in the population. The GALIib libraries (Wall, 1996) were used for the
GA implementation. Figure 5 illustrates the optimization program using the GA
algorithm, where the graph on the top denotes the test data and the other one is
of the training data. It can be seen that the objective function optimized using the
GA algorithm decreased sharply during the first 30 generation and became nearly
stable for the remaining generation. This indicates that the FSUBS feature
selection algorithm produces a sub-optimal neural architecture. Further
optimization using the GA algorithm can further searched for the best parameters
of the hidden units.

r-

1
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Figure 5: GA optimization
Table 1. Classifiers performance on protein sequences data
Classifier Training data Testing data
CR MR CR MR

MLP-MSE | 99.37% 0.63% 91.37% 8.63 %
MLP-CE 99.16% 0.84% 90.81% 9.19%
RBF-MSE | 99.26% 0.74% 91.56% 8.44%
RBF-CE 97.15% 28.45% 90.99% 9.01%
C4.5 98.40% 1.60% 79.74% 20.26%
GRBF 97.37% 2.63% 92.68% 7.32%

Table 1 gives the comparison results between different classifiers. Both MSE
and the Cross Entropy (CE) cost functions were used for the MLP and the
standard RBF networks. The MLP network with the CE cost function obtained
the highest classification rate of 99.37% on the training data. This is followed by
RBF-MSE 99.26%, MLP-CE 99.16%, C4.5 98.40%, GRBF 97.37%, and RBF-
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CE 97.15%. These results shows that the neural classifier with MSE cost function
could classify the training data very well. For the test data, on the other hand, the
GRBF neural classifier achieves the best result of 92.68%. This clearly shows that
the GRBF can even generalize more on the test data as compared to the MLP and
RBF networks with the MSE learning criterion function on the training data. The
decision tree classifier C4.5 is unable to achieve a better performance compared to
the neural classifiers. The main shortcoming of the GRBF neural classifier is that
it requires a longer training time due to the optimization process using the GA
algorithm.

6. CONCLUSION

This paper discusses implementation issues of a generalized RBF network
classifier. A modified feature subset selection algorithm is proposed. A standard
GA algorithm is applied to optimize the GRBF network. The GRBF network
architecture has good interpretability property, and it has demonstrated a better
generalization capability to the protein sequence data set. The comparison results
showed that the performance of the GRBF network classifier outperformed other
classifiers in terms of generalization capability. There are however several
limitations with the GRBF network classifier. E.g. the ordering problem of the
FSUB algorithm whereby the feature subset selected for each hidden unit depends
on the order of the data presented.
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