SHORT COMMUNICATION

Application of Real Time PCR for the Detection and Enumeration of *Vibrio parahaemolyticus* from Seafood in Sarawak (Malaysia)

LESLEY MAURICE BILUNG1*, VELNETTI LINANG1, KASING APUN1, SAMUEL LIHAN1, CHEAH YOKE KQUEEN2 & MICKY VINCENT1

1Department of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia; 2Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

ABSTRACT

Vibrio parahaemolyticus has been associated as the major cause of food poisoning and gastroenteritis in many countries including Southeast Asia. Their human infection is regularly associated with the consumption of raw or undercooked seafood and contaminated water supplies. A rapid method of detection is important to monitor the occurrence of *V. parahaemolyticus* in both food and environment samples especially in Malaysia. Thus, the aim of this study was to detect and enumerate *V. parahaemolyticus* from seafood by using the real-time PCR based on the SYBR green assay, targeting the thermolabile (tl) gene. The assay was applied on 24 seafood samples comprised of six cockles, six prawns, six squids and six fishes. In this study, all of the six cockles and prawns were positive for the presence of *V. parahaemolyticus* while fish samples have only two positive isolates. However, this study recorded no presence of *V. parahaemolyticus* in squids. Overall, the real-time PCR assay was proven to be highly specific, and is sensitive in detecting and enumerating *V. parahaemolyticus* in the seafood samples. In addition, this study has proven that seafood (especially cockles and prawns) are potential sources for *V. parahaemolyticus*.

Keywords: Detection, enumeration, real-time PCR, seafood, *Vibrio parahaemolyticus*

Seafood makes up one of the largest phyla of organisms in the animal kingdom. The term seafood covers fish, shellfish and mollusks from all waters – fresh and marine, warm and cold (Adams & Moss, 2002). Seafood is known for its nutritious content which is needed to make a person healthy. Nevertheless, there is health risks associated with the consumption of seafood. One of the major risks involves the consumption of raw or undercooked seafood that may be naturally contaminated by foodborne pathogens present in the marine environment. In Japan, consuming a variety of raw seafood or lightly cooked is highly selected as a favourite style of consumption. However, this practice of eating seems to provide a justification for many cases of of foodborne illness by *V. parahaemolyticus* in the country (Elexson *et al.*, 2013). Such risk is further increased if the food is mishandled during processing where pathogens could multiply exponentially under favourable conditions. In contrast to most of the other foodborne pathogens, *Vibrio* species has the aquatic habitat as their natural niche. As a result, vibrios are most commonly associated with seafood as natural contaminants. Among the potentially pathogenic vibrios occurring naturally on fish and shellfish, *V. parahaemolyticus* is the most widespread.

Early studies demonstrated that the Kanagawa phenomenon, a beta type haemolysis on Watsugama agar medium, was associated with most clinical strains but with very few environmental strains (Dileep *et al.*, 2003). The haemolysis was due to the production of the thermostable direct haemolysin (TDH) (Lee & Pan, 1993). Production of a TDH-related haemolysin (TRH) is also known as one of the virulence
traits of V. parahaemolyticus. The tdh and trh genes shares approximately 70% nucleotide sequence identity (Nishibuchi et al., 1985). These genes have been widely applied to identify the presence of pathogenic V. parahaemolyticus. There are other commonly used marker genes such as toxR (Zulkifli et al., 2009) and tl (Zhang et al., 2005; Micky et al., 2014) that provides better quantification of the total non-pathogenic and environmental V. parahaemolyticus population (Rosec et al., 2009; Theethakaew et al., 2013).

Several studies conducted in the recent years highlighted the rise of the prevalence of the organism and underlines the need for adequate consumer protection against pathogenic V. parahaemolyticus in Malaysia since seafood is one of the important ingredient and diet in this country. Export of seafood is an important economic activity for many developing countries, including Malaysia. Failure to meet the bacteriological standards of importing may cause severe economic losses.

Real-time PCR systems offer a wide range of capabilities. The system provides an ability to monitor amplicon accumulation as a reaction proceeds and allows the operator to evaluate product specificity without opening the reaction chamber, time-saving, and reduces carry-over contamination risk (Cai et al., 2006). The amount of DNA is measured after each cycle by the use of fluorescent markers included into the PCR mixture. Fluorescent reporters used can be a nonspecific dsDNA binding dye, or dye molecules attached to PCR primers or probes that generate a signal only in the presence of the target DNA sequence. SYBR Green is a nonspecific dsDNA binding dye that is commonly used in real-time PCR assay due to the advantages of being easy to design, relatively low setup and running costs (Arikawa et al., 2008; Barkallah et al., 2013). SYBR Green real-time PCR assays have been successfully used for the detection of food-borne pathogens such as Enterobacteriaceae (Martinon et al., 2011), Vibrio species (Zhou et al., 2007; Sujewa et al., 2009; Martinon et al., 2011; Wang et al., 2013), Salmonella species (Rakesh et al., 2010) and Listeria species (Barbau-Piednoir et al., 2013). This technique has also been applied for the rapid detection of virus such as sheep pox virus (Tian et al., 2012) and Avian influenza A (H7N9) virus (Zhu et al., 2013).

In this study, detection and enumeration of V. parahaemolyticus was performed by using the real-time PCR based on the SYBR green assay, particularly targeting the thermo labile hemolysin (tl) gene. SYBR Green is chosen due to the fact that it is more economical, rapid and sensitive (Dorak, 2007). Our study report the first observation of detection and enumeration of V. parahaemolyticus in seafood using real-time PCR in Sarawak, Malaysia.

Sample collection and preparation – Four types of seafood products were analyzed in this study. A total of 24 fresh samples consisted of bloody cockle (Anadara granosa), prawn (Penaeus species), Indian mackerel (Rastrelliger kanagurta) and squid (Loligo opalescen) were obtained from a local wet market in Sarawak, from September 2013 till February 2014. During collection, the samples were placed in sterile bags and were transported to the laboratory under refrigerated conditions. The samples were analyzed within 24 hours of collection.

Enumeration and detection of Vibrio parahaemolyticus from seafood samples by streak plate – Briefly, a 25 g-portion of each seafood sample were homogenized with 225 ml of alkaline peptone water (APW), in a sterile stomacher bag for 60 seconds (Noorlis et al., 2011). The homogenized samples were pre-filtered before being subjected to a series of ten-fold dilution (with the highest dilution at 10^{-4}) in sterile phosphate-buffered saline (PBS). Aliquots of each dilution (except at 10^{-4}) were spread plated in duplicates onto Thiosulphate-Citrate-Bile Salt Sucrose (TCBS; Merck, Germany) agar and CHROMAGAR™ Vibrio (CHROMagar 4, France) respectively. The plates were then incubated overnight at 37°C. The filtered samples broths were used for bacterial genomic extraction.

Standard curve construction and bacterial cell count by hemocytometer – A series of ten-fold dilution (with the highest dilution at 10^{-7})
was prepared with 9 ml of sterile saline solution in each tube. An overnight culture of *V. parahaemolyticus* (laboratory collection) in APW with 3% NaCl was also prepared. Dilutions were performed in triplicates. The overnight and diluted cultures were subjected for DNA extraction. A hemocytometer was used to count bacterial cell presence in each dilution series. Seven hundred microliter of the overnight and diluted culture was transferred into microcentrifuge tubes. Then, 300 µl of Crystal Violet dye solution was added into each tube. The tubes were then vortexed thoroughly. Ten microliter of the cell suspension was loaded onto hemocytometer chamber which was covered with a glass cover and then counted under a Polarizing microscope (Olympus BX51, USA).

DNA extraction of *Vibrio parahaemolyticus* from seafood samples and serial dilution samples – Bacterial genomic DNA was extracted from the seafood samples and serial dilution samples by using DNeasy Blood & Tissue Kit (Qiagen, Hilden; Germany) according to the manufacturer’s instructions.

Real-time PCR reaction condition and cycling parameters – All real-time PCR reactions were performed using a Rotor Gene 6000 RT-PCR thermocycler (Corbett Research Australia). Real-time PCR amplification was performed in a 25 µl volume containing 20 ng of genomic DNA, 12.5 µl SYBR supernmix and 5 pmol primer. The amplifications were carried out with cycling parameters 5 min at 95°C for pre-denaturation, 40 cycles each of 5 sec at 95°C for denaturation, 10 sec at 6°C for annealing, 25 sec at 72°C for extension. Melt curve analysis was performed at the end of each PCR run to evaluate the amplification specificity.

Isolation of *Vibrio parahaemolyticus* from seafood samples by streak plate – Yellow and green colonies were isolated on the TCBS agar plates. On the other hand, blue, mauve and white colonies were isolated on the CHROMAGAR® Vibrio. Cockle and prawn samples showed a constant growth of bacteria on both agar medium over the six month periods with varied colony counts. In contrast, fish and squid samples showed a periodic growth of bacteria on both selective medium. However, the isolation of suspected *V. parahaemolyticus* in all the seafood samples were very few to almost none as indicated with the presence of green colonies on TCBS and purple colonies on CHROMAGAR® Vibrio.

A total of 24 seafood samples comprised of six cockles, six prawns, six squids and six fishes were tested in this study. All the cockle and prawn samples showed a consistent presence of *V. parahaemolyticus* for the duration of six months while only two fish samples showed positive presence of *V. parahaemolyticus* (Table 1). However, there was no detection of *V. parahaemolyticus* recorded in all the squid samples.

The average concentration of *V. parahaemolyticus* cells gained from the standard curve for the seafood samples were as followed: Cockle samples (4.03 × 10³ cells/g), prawns (1.44 × 10⁴ cells/g) and fish (8.65 × 10¹ cells/g). Cockle samples recorded its highest amount of *V. parahaemolyticus* concentration in February 2014 with 2.04 × 10⁴ cells/g (Figure 1). For prawn samples, it recorded its highest amount of *V. parahaemolyticus* in September 2013 with 8.42 × 10² cells/g and the least amount of 3.31 × 10¹ cells/g was recorded in January 2014 (Figure 2). On the other hand, *V. parahaemolyticus* was detected in fish samples on September 2013 and February 2014 with 1.28 × 10² cells/g and 4.52 × 10¹ cells/g respectively (Figure 3).

Melting curve analysis was conducted at the end of each PCR run for the SYBR green based PCR detection to acquire an accurate Tₘ value. This was conducted to confirm the amplification of the targeted gene segment. SYBR green dye will intercalate to the double stranded PCR product at low temperature and cause the increase in fluorescence intensity. However, due to the denaturation and degradation of PCR products during high temperature, there was a rapid decrease in fluorescence intensity. A single dissociation peak in the melting curve analysis indicated that there was positive PCR amplification exhibited with an expected Tₘ value. The specific Tₘ value for thermolabile hemolysin (tl) gene of *V. parahaemolyticus* was 86.5°C.
Table 1. Detection of *V. parahaemolyticus* in four types of seafood samples from September 2013 to February 2014 on Real-Time Quantitative PCR (RTq-PCR).

<table>
<thead>
<tr>
<th></th>
<th>Cockles</th>
<th>Prawns</th>
<th>Fishes</th>
<th>Squids</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 2013</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>x</td>
</tr>
<tr>
<td>October 2013</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>November 2013</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>December 2013</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>January 2014</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>February 2014</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>x</td>
</tr>
<tr>
<td>Totals</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>N/A</td>
</tr>
</tbody>
</table>

+ = Indicate positive detection, x = Indicate no detection, N/A = Not Available.

Figure 1. *Vibrio parahaemolyticus* density in cockle samples. Cell densities detected in each sample are the means of three replications. Error bars represent standard error of the mean.
Figure 2. *Vibrio parahaemolyticus* density in prawn samples. Cell densities detected in each sample are the means of three replications. Error bars represent standard of the mean.

Figure 3. *Vibrio parahaemolyticus* density in fish samples. Cell densities detected in each sample are the means of three replications. Error bars represent standard of the mean.
In this study, _V. parahaemolyticus_ were detected and enumerated in seafood samples with species-specific thermolabile haemolysin (tl) primers with the sequence 5'- GTT GCA CTC GGT GAC AGC TTG-3' (MV2B-TLF) and 5'- AGT TTT GCG TAG GTT AAG TAC-3' (MV2B-TLR) (Micky _et al._, 2014) to amplify a 248 bp PCR product. Besides that, isolation and detection of _V. parahaemolyticus_ were also performed on two selective agars (TCBS and CHROMagar). The results of this study indicated that seafood is a potential reservoir for _V. parahaemolyticus_ in the study area, and in Malaysia generally. Overall, about 58% (14/24) samples were positive for the presence of _V. parahaemolyticus_.

Cockle and prawn showed consistent presence of _V. parahaemolyticus_ with an average density of 4.03 x 10^5 and 1.44 x 10^4 respectively for the six months of sampling. Cockles and prawns are two of the most consumed seafood product. The results are in agreement with other studies that indicated the higher concentrations of _V. parahaemolyticus_ cells in seafood samples as compared to water or environmental origins, mainly due to the ability of marine organisms to accumulate _V. parahaemolyticus_ cells within their tissues (Nelapati _et al._, 2012; Quiroz-Guzmán _et al._, 2013). Cockles are filter feeders and they tend to accumulate microorganisms in the surrounding waters which may also contain vibrios (Iwamoto _et al._, 2010). On the other hand, only two samples of fish were positive for _V. parahaemolyticus_. Healthy live fish is protected by its immune system and therefore bacteria cannot grow in its flesh. However, when the fish dies, the immune system is no longer functioning causing the bacteria present to be able to proliferate freely. Studies have shown that _V. parahaemolyticus_ may be found on the skin, gills as well as the intestinal tracts of fish (Adebayo-Tayo _et al._, 2011). Besides that, freshwater fish such as catfish and tilapia were among the fish that has shown prevalence of _V. parahaemolyticus_. A study conducted by Noorlis _et al._ (2011) has detected _V. parahaemolyticus_ in 25% of the catfish samples compared to 22.6% of red tilapia fish. The density of _Vibrio_ species and _V. parahaemolyticus_ in the samples ranged from 0 to 1.1x10^7 MPN/g.

A study conducted by Chitov _et al._ (2009) has documented a significant level of _V. parahaemolyticus_ contamination from raw squid samples. This is in contradiction with the result obtained in this study as none of the squid samples showed occurrence of _V. parahaemolyticus_. Although the food group (gastropods) are rarely the main cause of gastroenteritis, there have been 55 and 27 confirmed cases of food poisoning due to octopus, squids and jellyfish, respectively, in Hong Kong from 1999 to 2003 (Food and Environmental Hygiene Department, 2005). In addition, there are other research that studies the symbiosis between the squid (_Euprymna scolopes_) and its luminous bacterial symbiont _Vibrio fischeri_ (Nyholm & McFall-Ngai, 2004). Most seafood is caught from wild populations, later, handled and processed without any use of additives or chemical preservatives and distributed on the same day to the markets or freezing as the only means of preservation. This condition propagates the growth of _V. parahaemolyticus_ in raw seafood, thus, maybe harmful to the costumers. Besides the method of handling and preserving seafood, contamination of seafood with _V. parahaemolyticus_ could be due to the faecal contamination in the areas where seafood is harvested.

The incidence of illness from the consumption of contaminated seafood is a primary concern of the seafood industry, public health agencies and the public. As a result, demand for a rapid and sensitive method of isolation, detection and enumeration of pathogenic _V. parahaemolyticus_ is on the rise. The present study demonstrated that the application of SYBR Green based real-time PCR assay can specifically and accurately quantify _V. parahaemolyticus_ from genomic DNA preparation of various sources, including artificially and naturally infested samples over a large concentration range (Micky _et al._, 2014). The standard curve of the serial dilution of _V. parahaemolyticus_ was constructed to compare Ct value and to correlate the amount of _V. parahaemolyticus_ present in the seafood samples. The standard curve graph of the serial dilution of DNA showed that the Ct value was inversely
proportional to the initial template of DNA concentration and the correlation coefficient (R^2) value was equal to 0.99.

Because the number of isolates used in this study was limited, a comprehensive collection of isolates with detailed information on samples collected, sample locations, sampling frequencies and sampling periods from harvesting sites or farms, production movement and processing plants is warranted to identify the source and possible transmission. Knowledge of pre-harvest and post-harvest sources responsible for *V. parahaemolyticus* infection may help intergrators and producers to define critical, pre- and post-harvest control points on the harvesting sites/ farm and processing units because intervention at these points may reduce and/ or eliminate horizontal transmission and *V. parahaemolyticus* positive seafood arriving at the processing plants. It is also important to design hazard analysis and critical control point (HACCP) protocols as well conducting Risk Assessment to safeguard fresh seafood against *V. parahaemolyticus* contamination during processing and deliverance of seafood to consumers. More importantly, this knowledge would facilitate *V. parahaemolyticus* control by means other than sub therapeutic use of antibiotics.

The ubiquitos nature of *V. parahaemolyticus* in the aquatic environment and marine life creates a significant challenge for our country to produce seafood free of pathogens. This study was conducted to determine the occurrence of *V. parahaemolyticus* in raw seafoods in Sarawak, Malaysia. The results presented here provided information on the enumeration and detection of *V. parahaemolyticus*, targeting the species-specific gene (thermolabile haemolyisn; thl gene) by using a rapid SYBR green based real- time quantitative PCR assay. This study also demonstrated that the real- time PCR assay could be completed within 3 hours and has proven to be a promising tool to screen *V. parahaemolyticus* from food and environmental samples.

ACKNOWLEDGEMENTS

The authors thank the Department of Molecular Biology, Faculty of Resource and Science Technology, Universiti Malaysia Sarawak (Malaysia) for the facilities and funding. This study was also supported by funds provided by the fundamental research grants (FRGS/01(15)/744/2010(30)) from the Ministry of Higher Education, Malaysia.

REFERENCES

Quiroz-Guzmán, E., Balcázar, J.L., Vázquez-Juárez, R., Cruz-Villacorta, A.A., &

